
HAL Id: hal-02931474
https://telearn.hal.science/hal-02931474

Submitted on 6 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Architecture of Thin Client in Internet of Things
and Efficient Resource Allocation in Cloud for Data

Distribution
Aymen Abdullah, Phuoc Phamhung, Eui Namhuh

To cite this version:
Aymen Abdullah, Phuoc Phamhung, Eui Namhuh. An Architecture of Thin Client in Internet of
Things and Efficient Resource Allocation in Cloud for Data Distribution. The international Arab
journal of information technology, 2017, 14. �hal-02931474�

https://telearn.hal.science/hal-02931474
https://hal.archives-ouvertes.fr

842 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

An Architecture of Thin Client in Internet of
Things and Efficient Resource Allocation in

Cloud for Data Distribution
Aymen Abdullah A, Phuoc PhamHung, and Eui NamHuh

Department of Computer Science and Engineering, Kyung Hee University, South Korea

Abstract: These days, Thin-client devices are continuously accessing the Internet to perform/receive diversity of services in
the cloud. However these devices might either has lack in their capacity (e.g., processing, CPU, memory, storage, battery,
resource allocation, etc) or in their network resources which is not sufficient to meet users satisfaction in using Thin-client
services. Furthermore, transferring big size of Big Data over the network to centralized server might burden the network,
cause poor quality of services, cause long respond delay, and inefficient use of network resources. To solve this issue, Thin-
client devices such as smart mobile device should be connected to edge computing which is a localized near to user location
and more powerful to perform computing or network resources. In this paper, we introduce a new method that constructs its
architecture on Thin-client -edge computing collaboration. Furthermore, present our new strategy for optimizing big data
distribution in cloud computing. Moreover, we propose algorithm to allocate resources to meet Service Level Agreement
(SLA) and Quality of Service (QoS) requirements. Our simulation result shows that our proposed approach can improve
resource allocation efficiently and shows better performance than other existing methods.

Keywords: Cloud computing, data distribution, edge computing, resource allocation, and thin client.

Received January 19, 2015; accepted August 12, 2015

1. Introduction
Internet of Things (IoT) is a technology that enables
many objects (e.g., smart mobile devices, tablets, home
appliances, etc) which also known as Thin-client to
connect to Internet to perform diversity of computing
services (e.g., processing, memory, storage,
virtualization, etc) as well as others (e.g., receive/send
data, surf internet, access social websites, etc). As a
result, mobile services are presence in almost every
aspect of our daily life (e.g., education, health care,
commerce, etc). In spite of mobile computing
astonishing convenience and flexibility it offers, still it
has deficiency in ability to perform heavy computing
tasks/fast high data transmission due to restriction in
mobile devices resources (memory, processing, battery
life, CPU, storage, etc) as well as restriction in network
bandwidth when we consider variety of devices. To
overcome this issue, we use Mobile Cloud Computing
(MCC) [10] and edge computing [15]. MCC leverages
on the cloud technique for storage and process on
mobile devices or collaborate with edge computing to
acquire sufficient resources. edge computing can also
be considered as MCC where it perform the same
services as MCC. edge computing is localized which
moves data and computation closer to user location
where MCC is centralized. edge computing is an
important method for delivering web data over the
internet [15].

One of the ways to alleviate this issue is by using

MCC [10], which leverages on cloud computing
technique for storage and processing of data on mobile
device, or collaborating with external devices to get
more resources. This can be released with minimal
management effort or service provider interaction.
Connecting massive number of smart devices to MCC
to perform computing might burden the network and
the MCC as well. Therefore, edge computing is
efficient solution where it provides better resource
management, quick delivery of data, and fast access. In
another word, we are moving all the service in MCC to
be performed in edge computing based on the
requested service/size of data that is need to be sent in
order to be processed.

There is some research developed to minimize the
shortcoming of MCC. In [6], the author introduces
guidelines to create framework of virtual MCC
provider. The framework advantages is being nearby
thin-client to develop on-the-fly connection which
avoid the need to connect to infrastructure based cloud.
In spite of that, it has restriction in thin-client capacity
and low bandwidth between thin-client and cloud
because of the long distance. edge computing has
higher capacities and fast strong connections with
much higher bandwidth. Sufficient bandwidth is very
critical issue where the higher bandwidth we have the
higher quality of services is received [17].

Therefore, in this paper we introduce a new
architecture that collaborate thin-client and edge
computing which enhances its capacities. Furthermore,

An Architecture of Thin Client-Edge Computing Collaboration for Data Distribution and ... 843

we introduce our new strategy for data distribution
optimization such as big data. Moreover, we introduce
an algorithm to perform resource allocation in order to
satisfy Service Level Agreement (SLA) and Quality of
Service (QoS). We also introduce new communication
protocols between components on our architecture.
Our simulation show that our approach can improves
the efficiency of resource allocation and shows a better
performance comparing with others.

The rest of the paper is organized as follows. In
section 2, we introduce related work. In section 3, we
present overview of edge computing. In section 4, we
present our motivation scenario. In section, 5, we
introduce our system architecture. In section, 6 we
present our proposed communication protocol. In
section 7, we present our implementation and analysis
result. Finally, in section 8 we present our conclusions
and future work.

2. Related Work
There are many searches attempting to resolve
previously mentioned issues. In [19], the author
proposed efficient cloud based synchronization for
number of hierarchy distributed number of file system.
They utilize the concept of master-slave architecture in
order to propagate data to reduce traffics. Delgado et
al. [2], is presenting resource scheduling methods
which can be efficient in mitigating the impacts that
can influence application time of respond and
utilization of the system. Fan et al. [3] and Kwok [11]
is present the impact of data transmission delay on the
performance. In [9] the author introduce one way to
make a parallel processing to big data which will
increase the performance in federated cloud computing.
In spite of that, these researches do not state how much
resources should be used.

There are also many researches done dealing with
resource allocation. In [7] illustrate that shared
allocation is superior to dedicated allocation. In spite
of that, the author does not perform experiment with an
arbitrary number of SLA and does not show how fast
the server needs to be to guarantee QoS. In [13,14] the
authors provide services to huge number of SLA even
though it is difficult to obtain performance between
shared allocation and reserved allocation. In [12] the
author present model for securing resource allocation
in cloud computing where it design fuzzy-logic based
trust and reputation model.

Many researches have been done to provide better
way for the integration of mobile devices and cloud
computing. In [20] the author introduces an idea
utilizing cloud to improve the capability of mobile
devices. In [16] the author makes changes to Hyrax
which enables mobile devices to use cloud computing
platforms. The idea of utilizing mobile device as a
provider of resources is introduce. However, the
experiment is not integrated.

In [4], the authors just concentrate on using partition
policies to hold the effect of application on mobile
devices, but do not solve any other matter related to
MCC. To the best of our knowledge, there are not so
many researches considering collaboration of thin-
client and edge computing to provide better way of
managing data distribution and resource allocation in
edge computing instead of MCC as well as creating
protocol to show how these entities can communicate
with each other.

3. Overview of Edge Computing
Edge computing was design to be located at the edge
of network to provide scalability and availability of
web services. It allocates the logic of application and
the underlying data to network edges [8]. Some of
edge computing advantages are 1) reduce down
network latency, faster respond to end user, better user
of resource, reduce the cost of scalability, and fast data
delivery [8]. Edge computing consider as an extension
of content delivery network as well as MCC because it
offers all of mobile cloud capabilities. Edge computing
can be helpful with applications that run database
where it can distribute the section of database to edge
servers for farther processing [8]. Therefore having
edge server located closer to user location provides
significant advantages.

4. Motivating Scenario
Figure 1 illustrates our scenario which reflects the
benefits of the IoT-edge computing collaboration.

Figure 1. Motivating scenario architecture.

Our scenario start when user takes some pictures of
food which they are eating and later on they want to
cooking at home. The user decided to cook the same
food in the picture at home. However, it is
inconvenient and not safe to hold the smart phone in
their hand while they are cook. Some of today home
appliances such as refrigerator carry big screen and
capable to connect to internet. The user sends the food
picture to refrigerator to obtain food ingredient and

Narendra Rao Tadapaneni

844 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

cooking instructions. User can look at the screen or
listen to the cooking instruction which is read by
refrigerator system.

Unfortunately, the direct Internet connection of the
refrigerator only has a restricted bandwidth and
capacity to perform searches for food which might
generate thousands of search result and required long
respond time. Instead the refrigerator can connect to
edge computer then requests the edge computer to
access the internet to look for the information. After
receiving information, the result will be returns to the
refrigerator. Finally, the user can see or hear the
cooking instructions.

Our scenario in using thin-client and edge
computing introduce the potential benefit of their
collaboration in cloud computing environment which
increases the opportunity of using and managing
resource efficiently. In spite of that, the issues here are:

1. How to optimize data distribution?
2. How to increase/better managing resources

efficiently?
3. How to allocate sufficient resources to satisfy a

diversity of SLA.

5. System Architecture
Our system architecture consists of three Layers which
are illustrated in Figure 2.

edge computing. In this case we can guarantee QoS.
The upper layer is cloud computing environment and it
consist of mega data center, edge location server, edge
broker server which is purpose to receive new service
requests and 3rd part mega data center. Most of the
work will be accomplished by lower and middle layer.

Most of previously introduces approaches uses
1/m/1 model to resolve the above mentioned problem.
However, our proposed utilize 1/m/m/1 model for
resolving the problem. When the data is send to edge
computing, it will be divided into multiple blocks.
These blocks will be assigned to certain Virtual
Machines (VMs) where each block is divided into
multiple chunks which transferred to multiple
processors for processing. After receiving the
processed data, the processors join them into one data
and send them to user IoT devices. In this case we do
not burden the system to process big size data, ensure
the availability of the server to process other request
when they exists, and guarantee fast respond to ensure
QoS.

The overall process is divided into two phases.
Phase 1 will involve 1) determine VMs needed
minimum number and the speed of that VMs, and 2)
sorting, dividing and assigning data to VMs based on
VMs current capacity. Phase 2 will involve 1)
distribute data that has different capacities to
processors, and 2) merging data and send to IoT
devices. Table 1 describe our system component and
their role.

Table 1. System component and their role.

Figure 2. Our proposed system architecture.

The lowest layer consists of user IoT devices such
as refrigerator, smart TV, smart oven, smart phone,
etc., which is capable to connect to each other through
WiFi, 3G and LAN. The middle layer is the underlying
network which consists of edge computing and 3rd
party edge computing. We need 3rd party edge

5.1. Phase 1 of Our Proposed Method
5.1.1. Determine VMs Need Minimum Number
The purpose of algorithm 1 is to determine the

computing because 1) sometimes some requested
services might not be offered by home edge computing
and 2) due to the popularity of edge computing,
countless number of IoT smart devices might be
connected to edge computing requesting services
which might be too much for it to handle, so some of
the requested services can be redirected to 3rd party

minimum number of VMs depending on SLA. We
utilize Cumulative Distribution Function (CDF) F(x)
time respond which is available in [1]. Until the F(x)
reaches the targeted probability, the minimum
numberof VMs m keeps increases. Finally, we received
the required m for SLA. Below is the description of
F(x):

Component Role

IoT Smart Devices Responsible of connecting to Internet through
the network (WiFi, 3G, LTE, etc).

Edge Computing

Responsible of receiving user requests and
providing service such as processing, storage,

bandwidth, etc.

3rd Party Edge
Computing

Responsible of providing other services and
processing received service by other edge

Compuitng server.
Mega Data Center Responsible of providing services in the cloud.

3rd Party Mega Data
Center

Responsible of providing other services which
is not provided in the mega data center.

Edge Location Server

Responsible of which stores addresses edge
computing server for fast requests respond and

is used by edge computing to locate other
nearby edge computing to request previous

offered services.

Edge Broker Server Responsible of receiving new services
requested by the IoT device users.

An Architecture of Thin Client-Edge Computing Collaboration for Data Distribution and ... 845

s

å

F(x) =Probability (time of response < x) =
ì 1-e- µx -kµe- µxx

for s =mi -1 ï

-µx(m -s)é -µxæ1-mi +s ö ù

(1)
í1-e-µx -kµe

î

Where σ = λ ⁄µ

1-e

ë
ç
è

1-mi +s

÷

ûú
for s ¹mi -1

k=p(0) σ

mi -μ
mi!

*
mi

(mi -σ)

æ m-1 n P(0) = ç å +

mpm ö-1

÷

(2)
Figure 4. Our proposed strategy of resource allocation.

è n=0 n! m!(m-s) ø In shared Allocation, all of SLAs will have the same
k

! is the arrival rate and µ is the service rate.
Algorithm 1: Determining the No. of VMs

Input:

CDF of response time and arrival rate l= å li . As a
i=1

result, the minimum number of VMs mSharedAllocation to
meet k SLAs is given by:

1. ƛ // rate of arrival
2. µ // rate of service

mSharedAllocation=max(m1,...,mi ,...,mk) (3)

3. SLA(x,z) // x:time of response
// z: probability target
Output: m // required minimum no. of VMs
4. Float σ=ƛ/µ
5. Function determineMinVM(σ,µ,x,z) {

"!refer to the number of VMs required to satisfySLAi
of useri. Let msharedAllocation become the smallest number
of VMs which is required to meet k SLAs in Reserved
Allocation. So mReservedAllocation is given by:

6. If (σ -- (int) σ) m-(int) σ; k m = m (4)
7. Else m= (int)Math.floor (σ) + 1;
8. While F(x) <= z, m++;

ReservedAllocation å i
i=1

9. Return m;// required minimum no. of VMs}

Usually, edge computing infrastructure may provide
diversity of services to satisfy a large number of SLAs
by utilizing First Comes First Server (FCFS)
scheduling methods which is illustrated in Figure 3.
Therefore, we recommend allocating the VMs into two
groups where the first group will be used for Shared
Allocation (SA) msharedAllocation and the second group
will be used for Reserved Allocation (RA)
mreservedAllocation.

As a result, when more than one requesters have the
same SLAs, Shared Allocation will provide same or
better performance than Reserved Allocation
(msharedAllocation<=mReservedAllocation). But, if SLA1, SLA2 are
different for Shared Allocation and Reserved
Allocation, then it is difficult to determine which one
is better than the other.Table 2 shows an example of
both shared and reserved allocation.

In the first case, mReservedAllocation is better than
msharedAllocation even though the reverse case is true in the
Shard allocation.

Table 2. Proposed cases example.

Case !1 "1,#
1

!2 "2,
#2

mReserved mShared

1 3.9 3,0.7 3 10 10 11
2 3.9 3,0.85 2.9 12 12 10

In order to satisfy SLA1,SLA2 , we are trying to

discover the best favourite strategy regarding shared
allocation of reserved allocation. Furthermore, the
VMs can ensure the QoS as well. Let E(SLA) refer to
the average number of VMs which is required to meet
the given SLA over the considered arrival rate.

E(SLA) =

1 k
ò(k,x, y)

k 0

(5)

Figure 3. SLA Consideration.

 For shared allocation, the arrival jobs of SLA are

Let D be the SLA difference between both SLA1 and
SLA2. D is given by:

combined into a single steamed and served by m VMs. D= E(SLA1)-E(SLA2) (6)
As for reserved allocation, we provide one VMs for
each arriving job which illustrated in Figure 4. In Algorithm 2, we state the allocation strategy to

satisfy SLAs and QoS. In Table 3, we show the
relationship between D and angle α. Every D is fixed

ø
i

Narendra Rao Tadapaneni

846 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

1

1 2 3 i

n

by the change in arrival time λ1,λ2 in (0,30) and
average angle of SLA difference for every range. We
state angle α by the following formula which is
presented in Figure 5:

12, Else
13. Return SA // sharedallocation
14. Else
15. Return false {

sina =l2 sqrt(l1*l1+l2*l2)

Table 3. Service Level Agreement Difference (SLA).

D $
(0,20) 0
(20,40) 20
{40,66} 50
(66,88) 70

(7) 5.1.2. VMs Capacity
In this section we will sort, divide and assign data to
VMs current capacity. In order to set data priority we
utilize training data to sort out the data. The data with
high priority will be transferred first and the data with
low priority will be transferred last. The data can be in
blocks {bl1, bl2,…,bln} which has different sizes.
Then we uses Greedy algorithm to select the best VMs
based on their capacities. Finally, we assign VMs with
higher capacity to the block with big size. Figure 6
illustrate the proposed methods of assigning data to
VMs.

Figure 5. Allocation strategy.

Here we need to discover the speed of VM to
guarantee QoS. In addition we are applying little law
[18] which we describer below;

E[N]=
 p wherep= l
(1- p) µ

(8)

Figure 6. The assignment of data to VMs.

E[N] denotes the no. of jobs in the system. As a result,
the processing time expectation is as follow:

5.2. Phase 2 of Our Proposed Method
5.2.1. Distribute Data Block

E[T]= E[N]
l

= p
l(1- p = 1

µ 1- p = 1
µ-l (9) In this section we distribute data block that has

) ()

We set the bellow formula to satisfy QoS:

µ>=
 1

+l
E[T]

(10)

different capacities to processors. We start by dividing
data to block where the blocks also will be divided to
small size called chunks{chk1, chk2, …, chkn} which
has different size depending on the bandwidth strength.
chki denote to chunk in each block. w(chi) denote to the

Based on this formula , we can discover the VMs rate
service. We present the bellow example to set it clear.
Let’s say for example we want E[T] <= 10 second, λ=1
job/sec, then the needed VM rate is as fellow:

size of chunk. bwi denote the bandwidth between VMs
and processor. w(chi)/bi represent the time it takes to
send chunk from VMs to processor. When we consider
parallelization, then the time it takes to send chunks of

µ>= 1 + 11 (11) data to processors should even.
10 10

Algorithm 2: Determining the allocation strategy w(chk) w(chk) w(chk) w(chk)
= = = ... = t

(12)

Input:
bw1 bw2 bw3

n

bwi

n
1. ƛ1, ƛ2// rate of arrival Set S =w(block)= å w(chk)=t å bi (13)
2. µ // rate of service
3. SLA1, SLA2
4. E // processing time expectation
Output:
5. SA, RA //shared and reserved allocation strategy

Therefore:

i=0

w(chki)=t*bi =
 S
*bi b

i=0

(14)

6. Function determineAllocStrategy (ƛ1,ƛ2,SLA1,
SLA2,E,µ){

7. Calculate SLA difference D
8. Get the corresponding angle α from the SLA difference table
9. If (µ>= (1/E[T] +ƛ1) && µ>=(1/E[T]+ƛ2))
10. If (Math.asin(ƛ2/sqrt(ƛ1*ƛ1 + ƛ2*ƛ2)) <=α)
11. Return RA // reserved allocation

å i
i=0

Based in the above stated value, we are able to
determine the size of every chunk to adapt it with the
bandwidth. Then we sort out the processor based on
their capacities. The bigger the chunk of data will be
sent to processor with higher capacity to process it.

An Architecture of Thin Client-Edge Computing Collaboration for Data Distribution and ... 847

5.2.2. Merging Data
In this section we try to merge data and then send it to
IoT devices. The use of peer-to-peer synchronization
might generate complexity between processors. As a
result, we make edge computing to act as master which
will receive chunk of data from other processors to
reduce the complexity which result from firewall
between processors. Figure 7 illustrate four processor
example as well as master-slave and all-to-all
communication methods.

and LMA) in order to send data/ share data between
each other. In our case we will use this method to
create the communication of the entities mentioned
above.

Communication
of All to All

Communication
of Master-Slave

Figure 8. Sequence flow diagram between IoT device and edge
computing.

Figure 7. Communication strategy architecture.

6. Propose Our Communication Protocols
In this section we present our develop communication
protocol. The communication protocol takes place
between;

• Smart IoT devices and edge computing.
• Edge computing and other edge computing in

inter/intra network area.
• Edge computing and 3rd party edge computing.

Due to the significant advantages of edge computing,
most of the IoT devices requested service will be
redirected to edge computing instead of cloud
computing for the fact of being localized. This might
lead to overhead, low performance and poor quality of
services. As a result, we create communication
protocol between edge computing’s as well as 3rd
party edge computing which enablesthese components
to smoothly communicate with each other. Some of the
requested service might not be available in user home
edge computing, therefore we can request from 3rd
part edge computing which will guarantee quality of
services. Figures 8, 9, and 10 illustrate a sequence flow
diagram of proposed communication protocols.

Figure 11 illustrate the communication protocols
between the above mentioned entities. We assign
global address for each edge computing server which
is generated by edge computing location server which
will make it easy to discover/communication with
other 3rd party edge computing as well as other edge
computing. For the first time, edge computing need to
connect to edge computing location server to discover
surrounding other edge computing server. After that
they just connect directly to them. We use the same
approach in [5] to create the communication methods.
This method will create tunnel between entities (MAG

Figure 9. Sequence flow diagram between edge computing and
other edge computing in inter/intra network area.

Figure 10. Sequence flow diagram between edge computing and 3rd
party edge computing in inter/intra network area.

Figure 11. Communication protocols.

 B

C

Edge Computing

 C B

Narendra Rao Tadapaneni

848 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

7. Implementation and Analysis
In this section, we used numerical simulation to
examine the efficiency of SA and RA. Furthermore,
we compare the performance of our proposed approach
with existing one. The parameter in our simulation
consists of arrival rate (λ), response time (x), the
targeted probability (y), and the proposed algorithms.
We use Java (jdk-7u7-i586 and Netbeans-7.2) to
generate our simulation. The result proves that the
shared allocation and reserved allocation almost have
the same impact when they have the same SLA with
different arrival rate(λ), response time(x), and target
probability (y). We also experimenting inthe same case
but we used multiple SLA instead of single one.

Figure 12 illustrates shared allocation and reserved
allocation with different response time. The result
shows that the response time increases when the
smallest number of VMs decreases. It also shows that
when we set different respond time for shared and
reserved allocation, the probability is almost the same
for both of them.

Figure 13 illustrates SLA different target probability
of shard allocation and reserved allocation. The result
shows the minimum number of VMs which is needed
to meet SLA satisfaction. For example, when the target
probability to meet SLA is 0.2, then we need minimum
of 5 VMs for shard and reserved allocation. Therefore
we meet SLA different target probability for shared
and reserved location.

Figure 12. Different time response of shared and reserved
allocation.

Figure 13. SLA different target probability of shared and reserved
allocation.

Figure 14. Different arrival rate of shared and reserved allocation.

Figure 14 illustrate Different arrival rate of Shard
allocation and reserved allocation. The result shows
the minimum number of VMs which is required to
meet SLA which is equivalent to different arrival rate.
For example, we need minimum number of 3 VMs
when the arrival rate is 1.

When considering working with multiple SLAs, it is
recommended that the strategy of shared allocation is
more resource efficient than reserved allocation. Figure
15 illustrate the result of different SLAs of shard
allocation and reserved allocation. The result shows
that share allocation uses fewer VM than reserved
allocation when the number of SLA increases.As a
result, reserved allocation can provide guarantee rate
due to the offering of resources.

Figure 15. Different SLAs of shared and reserved allocation.

Furthermore, we compare the processing time of
sending big size of data to destination for our proposed
system with other approaches that uses only one single
processor. Figure 16 illustrates a comparison of our
proposed approach with other approaches that uses
only one processor to process big file size. For
example, the processing time for file size of 200Mb
using our approach results in less processing time than
other approaches that uses one processor. The result
shows that our proposed approach results in a better
performance than other approach (uses one processor).

Figure 16. Comparison of our proposed approach with other
approaches.

Figure 17 illustrate the result regarding the number

of thin clients/edge computing with respect to thin
clients’ workload.We calculate the minimum number
of thin client/edge computing which are able to satisfy
thin client requirement with different workload. When
the thin client work load increase, the number of edge
computing increase in order to satisfy the requirement.

An Architecture of Thin Client-Edge Computing Collaboration for Data Distribution and ... 849

Figure 17. Thin clients workload.

8. Conclusions
In this paper, we have introduced a system architecture
that utilizes the thin-client-edge computing
collaboration to enhance thin client capacities. We
introduce efficient strategy to optimize the data
distribution in edge computing. In addition, we create
algorithms to allocate resources to meet SLA and QoS.
Furthermore, we propose a new communication
protocol that allows entities in our system architecture
to communication or share data. We simulated our
proposed system to evaluate our method. Our proposed
approach enhances resource allocation and shows
better performance than other previous approaches.

Acknowledgments
This research was supported by the Ministry of
Science, ICT and Future Planning (MSIP), Korea,
under the Information Technology Research Center
(ITRC) support program (IITP-2015-(H8501-15-1015)
supervised by the Institute for Information and
communications Technology Promotion (IITP)). The
corresponding author is Eui-Nam Huh.

References
[1] Andreolini M., Casolari S., and Colajanni M.,

“Autonomic Request Management Algorithms
for Geographically Distributed Internet-Based
System,” in Proceeding of 2nd IEEE International
Conference on Self-Adaptive and Self-Organizing
Systems, Venice, pp. 171-180, 20-24 , 2008.

[2] Delgado J., Sadjadi S., Fong L., Yanbin L.,
Bobroff N., and Seelam S., “Efficiency
Assessment of Parallel Workloads on Virtualized
Resources,” in Proceeding of 4th IEEE
International Conference on Utility and Cloud
Computing, Melbourne, pp. 89-96, 2011.

[3] Fan P., Wang J., Zheng Z., and Lyu M., “Toward
Optimal Deployment Of Communication-
Intensive Cloud Applications,” in Proceeding of
IEEE International Conference on Cloud
Computing, Washington, pp. 460-467, 2011.

[4] Giurgiu I., Riva O., Juric D., Krivulev I., and
Alonso G., “ Calling the Cloud: Enabling Mobile
Phones as Interfaces to Cloud Applications,” in
Proceeding of ACM/IFIP/USENIX 10th

international conference on Middleware, vol.
5896, Urbana, pp. 83-102. 2009.

[5] Gundavelli S., Leung K., Devarapalli V.,
Chowdhury K., and Patil B.,” Proxy Mobile
IPv6,” Technical Report Network Working
Group, 2008.

[6] Huerta-Canepa G. and Lee D., “A Virtual Cloud
Computing Provider for Mobile Devices,” in
Proceeding of 1st ACM Workshop on Mobile
Cloud Computing and Services: Social network
and Beyond, San Francisco, pp. 1-24, 2010.

[7] Hu Y., Wong J., Iszlai G., and Litoiu M.,
“Resource Provisioning for Cloud Computing,”
in Proceeding of the Conference of the center for
advanced studies on Collaborative Research,
Ontario, pp. 101-111, 2009.

[8] Pang H. and Tan K., “Authentication Query
Results in Edge Computing,” in Proceeding of
20th Conference on Data Engineering,
Washington, pp. 560-571, 2004.

[9] Jung G., Gnanasambandam N., and Mukherjee
T., “Synchronous Parallel Processing of Big-Data
Analytics Services to Optimize Performance in
Federated Clouds,” in Proceeding of IEEE 5th
International Conference on Cloud Computing,
Honolulu, pp. 811-818, 2012.

[10] Kumar K. and Yung-Hsian L., “Cloud
Computing for Mobile Users: Can Offloading
Computation Save Energy?,” IEEE Computer,
vol. 43, no. 4, pp. 51-56, 2010.

[11] Tadapaneni, N. R. (2017). Different Types of
Cloud Service Models. Available at SSRN
3614630.

[12] Chandran K., Shanmugasudaram V., and
Subramani K., “Designing a Fuzzy-Logic Based
Trust and Reputation Model for Resource
Allocation in Cloud Computing,” The
International Arab Journal of Information
Technology, vol. 13, no. 1, pp. 30-37, 2013.

[13] Li J., Chinneck J., Woodside M., and Litoiu M.,
“Fast Scalable Optimization to Configure Service
Systems Having Cost and Quality of Service
Constraints,” in Preceeding of the 6th
International Conference on Autonomic
Computing, Barcelona, pp. 159-168, 2009.

[14] Lenk A., Klems M., Nimis J., Tai S., and
Sandholm T., “What's inside the Cloud? An
Architectural Map of the Cloud Landscape,” in
Proceeding of ICSE Workshop on Software
Engineering Challenges of Cloud Computing,
Washington, pp. 23-31, 2009.

[15] Tadapaneni, N. R. (2016). Overview and
Opportunities of Edge Computing. Social Science
Research Network.

Narendra Rao Tadapaneni

850 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

[16] Marinelli E., “Hyrax: Cloud Computing on
Mobile Devices using MapReduce,” Master
Thesis draft, 2009.

[17] Nguyen T., Nguyen M., and Huh E., “Service
Image Placement for Thin Client in Mobile
Cloud Computing,” in Proceeding of IEEE 5th
International Conference on Cloud Computing,
Honolulu, pp. 416-422, 2012.

[18] Sheldon R., Introduction to Probability Models,
Elsevier, 2010.

[19] Uppoor S., Flouris M., and Bilas A.,”Cloud-
Based Synchronization of Distributed File
System Hierarchies,” in Proceeding of
International Conference on Cluster Computing
Workshops and Poster, pp.1-4, 2010.

[20] Luo X., “From Augmented Reality to Augmented
Computing: A Look at Cloud-Mobile
Convergence,” in Proceeding of International
Symposium on Ubiquitous Virtual Reality, pp.
29-32, 2009.

[21] Lin Y., Kemme B., Patino-Martinez M., and
Jimenez-Peris R., “Enhancing Edge Computing
with Database Replication,” in Proceeding of
26th IEEE Symposium on Reliable Distributed
System, Beijing, pp. 45-54, 2007.

[22] Lin Y., Kemme B., Patino-Martinez M., and
Jimenez-Peris R., “Enhancing Edge Computing
with Database Replication,” in Proceeding of
26th IEEE Symposium on Reliable Distributed
System, Beijing, pp. 45-54, 2007.

[23] Kwok M., “Performance Analysis of Distributed
Virtual Environments,” PhD Thesis University
of Waterloo, Ontario, 2006.

[24] PanimalarS, A., Dharani, N., Aiswarya, R., &
Shailesh, P. (2017). Cloud Data Security Using
Elliptic Curve Cryptography.

[25] Pvandana, C., & Chikkamannur, A. (2016).
Internet of Things future in Edge Computing.

