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Abstract. Intelligent instruction of fault diagnosis, or troubleshooting,
tasks requires the capability to automatically infer the significance of
particular test outcomes observed by the learner in a practice environment.
This single process is central to virtually every aspect of intelligent
instruction in this domain, ranging from evaluating learner proficiency to
recommending an effective testing strategy. In highly complex target
systems this task becomes intractable, for the number of possible faults and
system configurations is enormous. The issue is not that an artificial
diagnostic expert must be highly precise, but that the internal expert must
interpret symptoms observed by the learner in terms of the symptoms
which might emerge from all possible sources, not just the faults that are
defined in the pool of sample faults that are presented in the exercises.

The approach presented here operates upon qualitative expressions of
the possible symptoms produced by faults in various units of the target
system. This greatly reduces the burden placed upon the author of the
application, while capturing the essence of his or her symptom knowledge.
This approach has been implemented in an instructional system that
automatically computes a provisional bank of symptom possibilities by
simulating the faults in the exercise pool, then acquires from the author
qualitative refinements to those computed possibilities, and finally delivers
instruction based upon that body of information.

BACKGROUND

While there have been a number of intelligent tutoring systems (ITSs) that
have demonstrated excellent instructional capabilities in the domain of
fault diagnosis, the cost of authoring a tutor for a new target system
                                          
1 This work was funded by Office of Naval Research under contract

No.F33615-90-C-0001.
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increases dramatically with the complexity of that system. This is not to
say that existing methods in diagnostic training systems have failed to
achieve the instructional objectives their developers established, but rather
that the current methodologies are proving to impose very high
development costs in the face of increasing complexity in the diagnostic
environment. As with all ITSs, therefore, those in the realm of fault
diagnosis must be judged both by their ultimate instructional power and
the cost of authoring new applications. A brief examination of the existing
methodologies will establish the problem.

Approaches

The approaches that have been taken to author and deliver intelligent
instruction in fault diagnosis tasks may first be considered under two major
categories:

1. Knowledge engineering (KE) approaches, such as Sherlock (Lesgold,
Eggan, Katz, and Rao, 1992; Lajoie and Lesgold, 1992), which capture
and operate upon one or more experts’ strategic and tactical knowledge
about diagnosing particular problems in a particular domain. In
Sherlock the underlying domain expertise is a hierarchy of subgoals,
each representing a problem solving method for some problem area.
Upon this structure, and a graphical simulation of the target system,
computer-coached practice is supported.

2. Model-based approaches, in which the target system is represented via
a model that serves to inform a domain-independent model of
diagnostic expertise about its normal and abnormal behaviors.
Typically the learner operates upon a separate graphical representation
of the target system, and the instructional functions are kept advised of
the tests performed by the learner on that presentation.

The model-based approaches can be further differentiated by the
manner in which the actual device is modeled. Existing approaches range
from very superficial device models to deep models that represent the
physical processes that govern the system’s operation. These differences
produce markedly different levels and types of diagnostic reasoning
processes that can be conducted by the ITS. The following three categories
typify model-based approaches.

1. ‘Signal–tracing’ approaches, such as MITT (Johnson, Duncan, and
Hunt, 1988; Wiederholt, Norton, Johnson, and Browning, 1992),
represent a particular device in terms of its normal connectivity. The
basic elements of a MITT-type model are 1) blocks, which may be
functionally defined or physically defined, and 2) inputs to and outputs
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of those blocks. Test outcomes are then interpreted in terms of the
system units which are, or are not, connected to the observed indication
in some way, i.e., a normal test outcome absolves the units that are
‘upstream’ from the observation, while an abnormal outcome
implicates the predecessors.

2. Simulation approaches, such as IMTS (Towne and Munro, 1988;
Towne, Munro, Pizzini, Surmon, and Wogulis, 1990), represent the
target system via a composition of objects, each of which carries rules
stating how that object behaves normally and misbehaves when failed,
in terms of its surrounding environment. This system model can then
be automatically executed under a wide range of modes and failure
conditions to produce a bank of symptom information suitable for
generating expert interactions with the learner.

3.  Physical process models, which represent a device or system via the
underlying physical principles that govern its operation. For example,
the processes might be chemical, biological, electronic, or
thermodynamic. One such system, CyclePad (Forbus and Whalley,
1994), supports the learner in both analyzing a complex
thermodynamic system and experimenting with design alternatives.
Because the physical process being modeled is well-defined and stable,
the  instruction can deal with a learner in qualitative terms as well as
quantitative ones.

These four approaches (KE, signal tracing, simulation, and process
models) have some commonalities. All may employ an interactive
graphical representation of the target domain upon which the learner
works, and may provide instructional expertise which determines such
issues as when to intervene, what support to provide, and what faults to
present as exercises. The fundamental difference between them is that the
KE approach requires the authors to explicitly express their
troubleshooting strategies, while the model-based approaches require the
authors to explicitly express knowledge about the operation of the target
system. This difference results in markedly differing authoring costs and
benefits.

Weaknesses of the Four Prototype Approaches

All four of the foregoing approaches have been implemented, and have
demonstrated excellent instructional capabilities. Each method has
performed admirably in its own intended domain. Strangely, if we wish to
now produce a new diagnostic ITS for a different target system, we find
that none of these approaches is likely to both produce excellent
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instruction and permit development at a reasonable authoring cost. Let’s
consider the problems with each.

KE Methodology

While very impressive instructional dialogues can be authored and
delivered via the KE approach, that result comes at an extremely high
price. KE methodology requires specialized skills and time–consuming
efforts to acquire the rules that experts use in diagnosing specific systems.
The developers face the daunting task of making explicit that which is
often implicit and subconscious.

The workload upon the author increases dramatically with increased
system complexity, leading to very high costs and unknown reliability of
the captured expertise. Furthermore, the captured strategic expertise is
necessarily couched in some assumed maintenance environment (such as
depot level, flight line, etc.). Thus, changes in the maintenance setting or to
the design of the target system can require that the knowledge base be
reworked.

Signal tracing

At the other extreme is the signal tracing approach which is certainly the
easiest to apply. In the face of extremely complex target systems, the ITS
author may elect to limit the level of decomposition reflected in the
connectivity model, thereby keeping development cost well within reason.
The fatal flaw of  the connectivity model approach is that its diagnostic
inferences are based upon the assumption that fault effects propagate along
the connections expressed in the static and fault-free input-output
representation, and that the direction of these effects can be expressed via
static connectivity specifications. In the real world, there are at least three
ways these assumptions are violated:

1. different faults produce effects that propagate in different directions;
no one signal flow serves all;

2. not all indicators are sensitive to all abnormalities that pass through
them; and

3. many faults change the connectivity of the target system,
invalidating the inferences made upon the fault-free representation.

This form of system representation can represent normal system
operation in an instructionally useful manner, but lacking a behavioral
model of the target system, it can reliably support diagnostic instruction
only for those ideal target systems that do not violate the assumptions.
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Simulation

The simulation approach dynamically determines the states of elements in
the target system in normal and abnormal conditions, thereby generating
the symptom information needed to support diagnostic instruction via an
artificial expert. For target systems involving perhaps less than a thousand
possible faults, this approach is highly effective, both in terms of
instructional power and development cost. When applied to a target system
that could fail in millions of ways, however, it becomes infeasible to
simulate enough failures to support diagnostic reasoning about the faults in
the exercises. It might appear that there are at least two workable ways to
resolve this complexity problem:

•  sample the possible faults, rather than attempting to produce a
complete symptom data base; and

•  reduce the level of decomposition of the target system to simplify
the system model

Unfortunately, neither of these methods succeeds. Incomplete symptom
knowledge is perfectly acceptable when computing good next tests, for
there is no requirement that the proposed tests be optimal. However,
incomplete symptom knowledge will result in incorrect statements from
the ITS to the learner concerning the implications of certain readings,
leading to ineffective instruction and well-deserved loss of credibility. The
second possible solution, viewing the target system at a higher level of
granularity, fails because this does nothing to reduce the true number of
possible failures. A circuit board, for example, has as many, or more, fault
possibilities as the sum of its parts, and those possibilities directly impact
all discussions of test implications. This does not to suggest that an
immense number of faults must be presented in exercises for instruction to
be effective. Regardless of the instructional method, a relatively small set
of well-chosen faults can provide very useful instruction.

Physical process models

The physical process models can deliver extremely powerful instruction at
a very tolerable cost. While authoring a physical process model involves a
substantial investment, the number of possible applications and the number
of prospective learners is typically quite large, thus the development cost is
easily justified. The problem with this approach is simply that it cannot
take on applications outside its domain. It might seem that process models
in such areas as electronics and electricity would support the modeling of
most modern digital systems. Unfortunately the effort involved in
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representing even a single CPU for example is immense, and simulating an
entire system, in all its possible fault modes, is essentially infeasible.

APPROXIMATE REPRESENTATIONS OF FAULT EFFECTS

We require, therefore, some means for capturing and representing the body
of symptom knowledge possessed by domain experts, while avoiding the
necessity to enumerate the individual effects that result from each possible
failure. The approach outlined here accomplishes this by having the
domain expert express, without enumerating specific faults, the possible
effects that could result from failures in each replaceable unit. The basic
approach adapts methodology from a body of work formerly called ‘fuzzy
set theory’ (Zadeh and Kacprzyk, 1992), but more recently changed to
Zadehan theory in honor of its primary developer, Lotfi Zadeh.

Expressing Fault Effect Knowledge in Approximate Terms

We ask the domain expert to specify the possible symptoms that failures in
a unit will produce, without asking for explicit fault-effect pairs. Under
this scheme, the domain expert picks one of seven English terms 
always, usually, very_often, often-as-not, sometimes, rarely, never   to
indicate the extent to which a particular replaceable unit will produce
particular symptoms at a specified indicator when that unit fails. Figure 1
indicates graphically the information this process yields.
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Figure 1. Fault Effect Specifications in Graphical Form.
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The figure reflects the effects of faults in three replaceable units (RU1,
RU2, and RU3) on two indicators (A and B). The top portion of the figure
indicates the manner in which failures impact Indicator A, the lower part
repeats this for Indicator B. The numbers 1 through 6 on links between
RUs and indicators give the ‘causal strength’ of functional relationships
between the RUs and the indicators. Strengths of 0 (the outcome never
occurs) are not represented explicitly in the figure.

According to the causal links shown, faults in RU1 will very often
impact indicator A by producing abnormal symptom A1, and sometimes
faults in RU1 do not adversely impact indicator A, and thus normal
indication A2 would be maintained. By contrast, faults in RU3 never
adversely affect indicator A, and we will observe a normal outcome
regardless of the manner in which RU3 fails. We can say that there is no
functional relationship between RU3 and indicator A. An example would
be a fuel injector in an automobile having no functional relationship to the
brake light.

The set of fault effect specifications linking one RU to one indicator is
termed a fault effect statement. In English, the fault effect statement for
RU3 and indicator B is:

Failures in RU3:
•  rarely  produce outcome 1, and
•  usually produce outcome 2, and
•  rarely produce outcome 3

at indicator B

Precision, Accuracy, and Consistency Considerations

Each fault effect statement implicitly reflects the domain expert’s
knowledge about the ways a particular unit can fail and the manner in
which those failures can affect an indicator in the target system. Obviously,
natural language is imprecise, which is also one of its great strengths. Even
when considering single-word qualifiers, there can be differences among
people concerning their meaning. We supply the following table to the
domain expert, as a guide to the use of the seven likelihood qualifiers.

Qualifier Portion of Faults that produce the Outcome
ALWAYS virtually all
USUALLY nearly all, with some exceptions
VERY_OFTEN more than half
OFTEN_AS_NOT about half
SOMETIMES some, but less than half
RARELY very few
NEVER none
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Without doubt, the domain expert cannot think though all the
ramifications when there are thousands of possible faults in a unit.
Nevertheless, domain experts can say things like “Most faults in this unit
will affect this indicator, but very few affect that indicator.” They can also
make more extreme statements, such as “There is no relationship between
this unit and that indicator, thus failures in this unit cannot affect that
indicator.” This level of precision has been found to be quite attainable
from domain experts, and is fully adequate to author a diagnostic ITS.
Importantly, this qualitative basis also provides a natural source with
which to generate English language dialogs to rationalize the internal
expert’s inferences and recommendations. Examples of this are provided in
a later section.

There is certainly no doubt that different domain experts would supply
different likelihood judgments. The impact upon instruction of errors of
judgment by the domain expert are generally proportional to the magnitude
of the error. If a domain expert indicates that some outcome rarely occurs,
when in fact it often occurs, then there will be some distortion in the level
of suspicion which the internal expert attaches to some faults during
instruction, and this distortion could somewhat affect the recommended
diagnostic strategy. The distortion would only be critical, however, if the
fault effect statement specified an always relationship when it should be
never, or vice versa. It should also be noted that the fault effect statements
of two or more experts could be compared automatically, since the
repertoire of fault effect statements is fixed for a particular model of the
target system. So, once that model is developed, two or more domain
experts could supply the required fault effect judgments, and those could
be checked for consistency. This is not currently implemented in the
authoring system described below, but is a very feasible approach to
determining the validity of the knowledge base.

A fault effect statement should also be internally consistent − the sum
of the likelihood qualifiers should reflect totality. To illustrate this,
suppose we assign the following percentages to the seven qualifiers:

Qualifier % of Faults
ALWAYS 100
USUALLY 95

VERY_OFTEN 75
OFTEN_AS_NOT 50

SOMETIMES 25
RARELY 5
NEVER 0

Using these values, we can sum the qualifiers in any fault effect
statement. The sum for the fault effect statement for RU3 and indicator B
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listed previously is 105% (one usually and two rarely’s), which is certainly
not a serious inconsistency. Clearly, a fault effect statement that totals
190% would be inconsistent (e.g., two symptoms classified as usually), as
would be one that totals 30%. The authoring system described below
points out large inconsistencies as the domain expert supplies the
information in the authoring system. Minor inconsistencies, however, are
not flagged for correction. Instead, the authoring system factors the
supplied qualifiers so that the total likelihood is 100%. Consequently, the
methodology does not burden the domain expert with maintaining
unnecessary precision.

This discussion of quantities points out that there is nothing magical
about the seven qualifiers. We could alternatively ask the domain expert to
estimate the percent of faults that would produce each outcome, rather than
asking for a selection of English terms. Doing this, however, changes the
nature of the domain expert’s task significantly, and suggests a much
higher precision standard than is really required.

Additional Domain Expertise Required to Support Intelligent
Instruction

In addition to the fault effect information, the domain expert provides to
the authoring system 1) qualitative judgments of the reliabilities of the
RUs, 2) approximate RU replacement times, 3) a pool of specific faults for
presentation within exercises, 4) a set of verbal problem reports, one of
which is issued to the learner at the start of each exercise, and 5) a
technical explanation of each fault.

RU Reliability

The reliability of each unit is specified relative to the other units in the
target system, under one of the following five categories:

1. least reliable of the units in the system;

2. less reliable than most other units in the system;

3. average reliability of the units in the system;

4. more reliable than most other units in the system; or

5. among the most reliable of the units in the system.

Based upon these judgments, the instructional system rank orders its
suspicions of each unit at the start of each problem. As symptom
information is obtained by the learner, within a simulation environment
described later, the instructional system updates its suspicions of the units.
Consequently, the units are initially sorted into at most five rank levels,



Approximate Reasoning Techniques for Intelligent Diagnostic Instruction

271

and then they disperse into many more levels of suspicion as symptom
information is received and processed.

Replacement Times

The RU replacement times impact the decision to conduct further testing,
versus replacing the most suspected RU. Sometimes two equally suspected
RUs cannot be discriminated from the test opportunities that the design of
the target system offers, thus the learner must replace the one with the
shorter replacement time (RU cost is also a vital factor in this decision, but
this is not currently used by the instructional authoring system).

Pool of Faults

The pool of specific faults are particular failures in particular replaceable
units. These faults are chosen to be instructionally appropriate and
representative of faults found in the real world. While the learner may
never be required to determine exactly what in the RU failed, or how that
component failed, the specific symptoms produced by a particular sample
fault are fully determined only when the fault is fully defined.

Problem Reports

For each exercise, the domain expert authors a verbal problem report
which is issued at the start of the exercise. This statement can be purposely
vague or specific, helpful or not helpful. The following problem statement
is typical.

The Overload light keeps coming on when we switch from Standby
to Radiate mode.

 Technical Explanation

Also, for each fault in the exercise pool, the domain expert prepares a
technical explanation of its impact upon the target system. This technical
content is presented to the learner at the conclusion of each exercise. An
example of such an explanation is shown here.

There was a failure in the Optical Fan Sensor A14 which caused it to
cut off the fan and raise the alarm condition. Any loss of signal in the
first stage amplifier circuit will also produce this abnormality.
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GENERATION OF DIAGNOSTIC EXPERTISE

This section will outline the processes that are executed within a diagnostic
ITS which employs the approximate fault effect information to represent
the real world. This discussion assumes that the learner is operating upon a
graphical simulation of the target system.

Problem Selection and Fault Introduction

The first task of the ITS is to select a problem that offers the appropriate
level of difficulty for the individual learner. Problem difficulty is computed
by automatically examining the symptoms produced by each candidate
fault. Let’s consider two candidate faults, fault x and fault y, both
occurring in RU1 of  Figure 1. Suppose these two faults produce the
following symptoms:

Fault Indication at A Indication at B
Fault x in RU 1 A1 B3
Fault y in RU 1 A2 B1

 From Figure 1 we see that each fault produces one abnormal symptom
and one normal symptom. Therefore there is no difference in the difficulty
of detecting the presence of the two faults. All other factors being equal,
faults that produce very few abnormalities are more difficult to resolve
than those that provide more evidence of their existence.

Secondly, note that fault x corresponds well with the approximate
symptoms of RU1; both outcomes A1 and B3 are representative of faults in
RU1 (A1 occurs very often; B3 occurs usually). Fault y, however, will be
much more difficult to identify, since its symptoms do not correspond well
with the population of faults that typically occur in RU1 (A2 occurs
sometimes; B1 occurs rarely). Thus, fault y will be much more difficult to
diagnose than will be fault x.

It is also important to realize that a particular fault might exhibit
symptoms that are more representative of a different RU than its true host
RU. For example, a fault in RU1 that gives symptoms A2 and B2 looks
more like a faulty RU3 than a faulty RU1. An expert troubleshooter would
rationally suspect RU3 over RU1 after observing these symptoms.

After analyzing and rank ordering the faults that are available for
exercises, the ITS attempts to select a fault that presents an appropriate
level of difficulty for the individual. If the learner’s previous problem was
performed successfully and with few calls for automated guidance, then
difficulty is maintained or increased. Otherwise problem difficulty is
reduced below that of the previous problem.
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Upon selecting the fault to be presented, the ITS introduces it into the
simulation of the target system. In our simulation environment this is done
by setting a failure_state variable which impacts the behavior rules of the
RUs. This produces the normal and abnormal symptoms that would be
seen on the real system, under that fault condition.

Symptom Interpretation and Maintenance of Suspicions

Recall that at the initiation of each problem the ITS rank orders its
suspicion of the RUs to reflect their relative reliabilities. As the learner
performs diagnostic work on the simulated target system, the internal
diagnostic expert interprets, transparently to the learner, each symptom
displayed according to the approximate fault effect information, and it
revises its suspicion rankings. Suppose, for example, that indicator B in
Figure 1 is a Power Meter with a normal reading of 12 VDC, and that RU3
is a Low Voltage Power Supply (LVPS). If a learner observes 12 VDC at
the meter, the diagnostic expert would significantly reduce its suspicion of
the LVPS, as this normal reading is rarely observed when the LVPS fails.
Likewise, it would drastically reduce its suspicion of RU2, since failures in
this unit always produce some abnormal reading at the meter. Thus, after
this indication is observed, the ITS would greatly increase its suspicion
ranking of  RU1, compared to the other two RUs. Alternatively, suppose
the learner observes outcome B2 at the meter. Then the internal
diagnostician would drastically reduce its suspicion of RU1, since this
outcome is never produced by faults in RU1.

The magnitude of the reduction in suspicion level for a particular RU is
proportional to the rarity of observing that symptom, according to the
symptom information. If a symptom is observed that can never occur when
a particular RU fails, then that RU suspicion ranking is reduced by the
most possible. A symptom that sometimes occurs only slightly reduces an
RU suspicion ranking.

Making Replacement Decisions

As evidence is accumulated by the learner, the RUs that could produce the
observed symptoms move toward the top of the suspect list. If one RU
emerges well above all the others, the instructional system records that the
learner has acquired enough evidence to effect a replacement. Furthermore,
the instructional system records whether or not a particular replacement is
rational, i.e., did the learner replace a highly suspected unit? This is a
crucial facility, since it allows the ITS to correctly credit a learner for
making a rational replacement, even if that replacement turns out to be
incorrect.
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This does not promote wholesale swapping by the learner. The
instructional system also detects when the learner makes a premature
replacement, whether that replacement turns out to be correct or not. In this
case, the learner replaces a unit which has not been brought under
suspicion by the observed symptoms, and the ITS so notes in the data
accumulated for each student.

Generating A Testing Sequence

We require a process that is highly proficient in making and justifying next
test decisions. This capability then supports the instructional functions of
1) demonstrating expert solution strategies, 2) assessing the learner’s test
selections, and 3) suggesting good tests to perform next. Previous research
(Towne and Johnson, 1987) has shown that excellent testing strategies can
be generated by repeatedly performing that test which has the greatest
potential for reducing uncertainty, per unit of time invested. System
uncertainty, or entropy, is computed using Shannon’s measure:

U = Σ pj log2 pj, j=1, number of hypothesis
where pj is the probability that hypothesis j is true.

To compute the expected uncertainty that would result from performing
any test, the diagnostic expert notes the likelihoods of each outcome of the
test (available from the fault effect statements), and projects the suspicion
levels that would result from each outcome. From this, the expected system
uncertainty can be determined. Those tests that offer the greatest reduction
in system uncertainty, per unit time to perform, are the tests experts would
perform at that stage in an ongoing exercise.

A simplified version of this has now been implemented which
produces effective next test decisions with the qualitative symptom
information discussed here. Under this process, the ITS determines, at each
stage of a diagnostic problem, the extent to which each test is likely to
change the RU suspicion rankings. The most productive tests are those
promising the greatest impact upon suspicion rankings. An ideal test would
be one that has many possible equally likely outcomes, each of which
clearly eliminates some of the more highly suspected RUs from suspicion.
Note that this is in harmony with the ‘half–split’ concept often taught, but
is much more generalized than that simplified heuristic.

IMPLEMENTATION

The foregoing ITS authoring and instructional delivery concepts have been
implemented in a system named DIAG (Diagnostic Instruction and
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Guidance). DIAG provides the tools to author a diagnostic ITS and to
deliver intelligent diagnostic instruction. The key feature of this system is
that it generates all of the diagnostic instruction automatically, using the
simulation model of the target system and the symptom knowledge base
authored for it.

Authoring a New Diagnostic ITS

The steps in authoring a DIAG ITS are as follows:

1. produce an interactive model of the target system and establish
modes of operation

2. provide RU reliabilities and RU replacement times;

3. specify the faults in the exercise pool;

4. specify each exercise (fault, problem report, initial mode, and
maximum time);

5. produce the approximate RU symptom information.

Interactive Model

Figure 2. A Portion of a Device Model (1 part of 17)
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The interactive model of the target system is produced using the RIDES2

(Munro, Johnson, Surmon, and Wogulis, 1993; Towne, 1994) simulation
authoring system. The resulting model responds to user actions, such as
changes in control settings or attachment of test equipment, and to the
failures that are introduced in the troubleshooting exercises. DIAG
provides the authoring tools to structure the model in a hierarchical
fashion, permitting the author to represent different subsystems to any
desired level of detail. One section of a 17-section device model is shown
in Figure 2.

Once the system model is constructed, the author defines the modes of
operation that will be used in the exercises by setting the switches and
keying in associated mode names.

RU Specifications

The author completes the DIAG dialog box shown in Figure 3 to specify
the names, replacement times, and reliabilities of the replaceable units.

Figure 3. Authoring Interface for Specifying Replaceable Units.

Fault Specifications

The DIAG author enters a verbal account of the way each fault impacts the
system. One of these is presented to the learner at the conclusion of each
exercise. This account can be a simple statement or a much more
technically detailed explanation.

Exercise Specifications

The DIAG author specifies an exercise by 1) selecting the fault that will be
presented in the exercise; 2) authoring the problem statement to be issued
                                          
2 RIDES was developed under Air Force funding, Contract No. F33615-90-C-0001.
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at the start of the exercise, 3) selecting the mode in which the system will
initially be presented, and 4) setting a maximum time limit allowed. This
design permits the author to form multiple exercises for any fault, in which
the problem is made easy or difficult by the extent to which the problem
statement is informative.

Approximate Symptom Information

Finally, the DIAG author produces the symptom data that supports DIAG’s
diagnostic reasoning process. First the author commands DIAG to generate
a provisional set of fault effect statements. DIAG does this by simulating
each fault and noting the frequency of the various outcomes. If the fault set
is large compared to the number of possible faults, then these
automatically generated relationships will be nearly complete; if the fault
set is small, the relationships will not reflect reality to a high degree. Next
the author refines the automatically produced fault effect statements to
reflect his or her much broader understanding of the target system, and its
possible faults. The dialog box of Figure 4 is used for this purpose (the
provisional fault effects are reflected in the dialog box as the author
addresses each condition).

Figure 4. Authoring Interface for Specifying Fault Effects.

Here the author has produced one fault effect statement with five
mouse clicks: 1) selected the mode from the list in the dialog box, 2)
selected the RU from the graphical device model, 3) selected the indicator
from the graphical device model, 4) selected the symptom “beeping”, and
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5) selected the qualifier “Rarely”. The resulting fault effect statement that
DIAG retains internally is:

In Operate mode:
Failures in RU Switch Driver A:

•  rarely  produce outcome “beeping”
at indicator Return to System Control

A few more mouse clicks establish the possibilities of hearing “siren”
and “silent” at this audible indicator under this fault condition. Then the
DIAG author selects a different affected indicator and repeats the process.
The authoring burden is significantly reduced by only requiring symptom
specifications for abnormal outcomes.

GUIDED PRACTICE

When the authoring phase is complete, DIAG will deliver guided exercises
in fault isolation, administering all aspects of the instruction. The first
problem for a learner is selected, its problem report is presented, and the
learner starts working the problem.

Within-exercise Support

As the learner conducts diagnostic actions, DIAG keeps records of the tests
that were performed and the inferences which could be made from the
symptoms shown. To consult with DIAG, the learner clicks a Consult
button then chooses a consultation type from the presentation shown in
Figure 5.

Figure 5. DIAG Consultation Selection Box. (The selections See problem
report and See fault recap simply present that information again.)
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Discuss Replaceable Units

The learner selects this consultation type when he or she wants to discuss
how the symptoms seen in an ongoing exercise relate to a particular RU.
DIAG then constructs a dialog that reviews and interprets the symptoms
that were exhibited that bear upon the selected RU. The following is
DIAG’s response when a learner selected an RU named PC card A12A4:

PC card A12A4 is one of the stronger suspects,
however some indications you have seen contradict that theory.

Here are some of them:
Vent Fan B2 sound was NOT_RUNNING in Radiate mode.
 This is an abnormal symptom (normal is RUNNING)
  which rarely results when this unit fails.

This reflects that DIAG was also suspecting this RU, based upon the
symptoms the learner had seen, but that some symptoms do not support
that theory.

Discuss Indications

The learner selects this consultation type when he or she wishes to discuss
some currently exhibited symptom. DIAG first states the normality of the
selected symptom, then it interprets the symptom in terms of the RUs that
are currently most suspected. The following is DIAG’s response when a
learner selected the PC Card Interlock Indicator:

The PC Card Interlock Indicator is off which is
normal in this Radiate mode.

Ventilating Fan B2 has no effect on this test.
Optical Fan Sensors A3 and A14 has no effect on this test.
PC card A12A36 sometimes

allows this normal indication even when failed.

This indication does not rule out any of the currently most suspected
RUs. If it had, DIAG would have stated that the symptom rarely or never
results from failures in the selected RU.

Review Suspicions

The learner selects this consultation type to go over his or her current
suspicions. After the learner selects the RUs he or she most strongly
suspects, DIAG critiques those suspicions, while not revealing the true
fault.
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The symptoms you have seen so far do not justify your suspicion of
3 of the units you indicated.

These symptoms implicate 6 other units that you should also
suspect.

Here the learner is suspecting three RUs which DIAG has ruled out,
and is failing to suspect six other RUs that should still be under suspicion.

What to Do Now

When the learner makes this request, DIAG responds with the best next
test to perform, considering the progress that has been made (symptoms
seen) in the exercise so far.

A good action now is to check Vent Fan B2 sound in Radiate
mode.

After-Exercise Support

Upon completion of an exercise, the learner sees the fault recap that
describes the mechansims by which it affected the target system. At this
point, the learner may proceed to the next problem, or may request either
or both of two kinds of debriefings about the just completed exercise:

1. a review of the learner’s work on the previous exercise, and a
discussion of the significant test outcomes that were seen, and

2. a demonstration of an expert diagnostic strategy for that problem.

Discuss Previous Exercise

For this debriefing type DIAG steps through each test performed by the
learner that had significant impact upon the suspicion rankings,
summarizing and displaying the symptom that was originally exhibited,
noting whether that symptom was normal or abnormal, and listing the RUs
that should be most suspected at that stage of the exercise. The textual
presentation for one test appears as follows:

Channel 2 Arc Indicator was on in Radiate mode,
which was abnormal (normal is off).

The most suspected units are now:
T6
Traveling Wave Tube V2
Vac-ion Power Supply A15
PC card A12A48
PC card A12A4
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See Expert Approach

For this consultation type DIAG diagnoses the fault in the previous
exercise in an expert manner, explaining each test it selects, showing the
symptom that results from the test, and listing the units that should be most
suspected at that stage of the diagnostic sequence. The textual part of one
step of the expert demonstration is shown here:

We check A1 Standby Button in Radiate mode.
It is green which is abnormal.

(Normal is off)
The most suspected units are now:
PC card A12A48
T6
PC card A12A32
PC card A12A22
PC card A12A4

FINDINGS AND CONCLUSIONS

The effectiveness of DIAG has been partially demonstrated via a large
prototype application. This application says a great deal about the cost-
effectiveness of the authoring process, the robustness of the system in
addressing complex systems, and the sufficiency of qualitative symptom
information in generating meaningful instructional dialogs and
demonstrations. The application alone says nothing about the effectiveness
of that instruction that is produced, which for now we must judge simply
by considering the kinds of instructional processes and dialogs that are
produced.

Prototype Application

The application addressed a portion of a very large shipboard radar
transmitter system spanning multiple equipment bays. The application
focused on one of the major units, a Driver/PreDriver equipment. The
system model was presented as 17 screens of operable simulation graphics,
and consisted of 86 replaceable units, 49 active indicators, 31 operable
controls, and 17 test points. The application was developed by the writer in
approximately five weeks, while the domain expertise was provided by a
Navy technician3 in approximately four weeks, two of which were devoted
to production of the fault effect information. The writer entered the fault
effect information to DIAG in approximately one week. The technician

                                          
3 Petty Officer James Armstrong, AEGIS Training Center, Dahlgren, VA.
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who provided the fault effect information did so without difficulty,
following less than one hour of direction. No inconsistencies were evident
in the judgments he made, and he worked without assistance to completion
of the effort.

Analysis

The very modest time investment to produce such a large application
indicates that this methodology of representing expertise about the target
system can be highly cost effective. Moreover, the application could be
extended at any time with minimal impact on the existing knowledge base.
Because the fault effect statements are specific to particular RU−indicator
pairs, the addition of more test points, indicators, or possible fault areas
would have no impact on the existing knowledge base.

There has not been a formal evaluation of instructional effectiveness.
The instructional capacity of DIAG does seem promising, especially
considering that it generates all interactions with the learner automatically.
Nevertheless, it is clear that the depth of technical explanations that DIAG
can generate automatically does not rival that which can be crafted via a
KE-based approach. In essence, there is no real limit to the technical depth
that a KE approach can capture and deliver, while DIAG cannot explain
technical issues that are deeper than its qualitative knowledge base.

We intend to explore ways to further enrich the technical content that
can be supplied by the domain expert while interacting with DIAG. For
example, DIAG might offer to the domain expert the option to explain
fault effect specifications as they are entered. While this would
undoubtedly increase the cost and time to develop an application, it would
allow DIAG instruction to approach the richness offered by KE techniques,
while avoiding the necessity to engage in knowledge engineering
processes.
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