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Abstract 

In two experiments we explored how learning from traditional molar worked-out examples - 

focusing on problem categories and their associated overall solution procedures - as well as 

from more efficient modular worked-out examples - where intrinsic cognitive load is reduced 

by breaking down complex solutions into smaller meaningful solution elements - can be 

further enhanced. Instructional explanations or self-explanation prompts were administered to 

increase germane cognitive load. However, both interventions were not effective for learning 

and prompting for self-explanations even impaired learning with modular examples. In the 

latter case, prompting might have forced learners to process redundant information, which 

they had already sufficiently understood. 
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Can Learning from Molar and Modular Worked Examples be Enhanced by Providing 

Instructional Explanations and Prompting Self-Explanations? 

It has often been argued that the most important prerequisite for successful problem 

solving probably consists of the availability of abstract problem-type schemas (Gick & 

Holyoak, 1983; Reed, 1993), that is, representations of problem categories together with 

category-specific solution procedures. Once a problem has been identified by means of its 

structural problem features as belonging to a known problem category, the relevant schema 

is retrieved from memory. This schema is then instantiated with the information that is 

specific to the to-be-solved problem. Finally the category-specific solution procedure 

attached to the schema is executed in order to produce a solution to the problem (cf. Derry, 

1989; VanLehn, 1989). Schema-based problem solving is considered to be very efficient and 

therefore a substantial amount of research on skill acquisition has focused on the question of 

how such schemas can be conveyed.  

As has been demonstrated repeatedly, worked-out examples (i.e., example problems 

illustrating problem categories together with step-by-step solutions) are an important 

instructional device for supporting the construction of problem-type schemas – particularly in 

the initial phases of skill acquisition (for an overview see Atkinson, Derry, Renkl, & 

Wortham, 2000). This ‘worked-example effect’ is usually explained by referring to Cognitive 

Load Theory and its distinction between intrinsic, germane, and extraneous components of 

the overall cognitive workload that arises during schema acquisition (Sweller, Van 

Merriënboer, & Paas, 1998). The number of elements that are to be integrated into a to-be-

learned schema and therefore have to be processed in working memory simultaneously is 

referred to as intrinsic cognitive load. Intrinsic cognitive load depends on the relational 

complexity of the to-be-learned content (number of elements that are to be integrated into an 

schema) and the learner’s degree of domain-specific prior knowledge (i.e., schema 
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availability). It is usually assumed in Cognitive Load Theory that intrinsic cognitive load 

cannot be altered by instructional design. It has, however, been argued that there are 

instructional-design manipulations that reduce intrinsic cognitive load (Gerjets, Scheiter, & 

Catrambone, 2004; Van Merriënboer, Kirschner, & Kester, 2003). 

Beyond intrinsic cognitive load there might be additional cognitive load due to the 

nature of the instructional materials and the activities learners engage in. This load can be 

influenced by instructional design and can be categorized according to whether it is beneficial 

for schema construction (i.e., germane cognitive load) or not (i.e., extraneous cognitive load). 

When intrinsic task demands leave sufficient cognitive resources available, germane 

cognitive load might be induced by stimulating higher-level cognitive processes required for 

a deeper understanding of the materials; that is, processes that stimulate integrating the 

elements into a schema. Extraneous cognitive load is the result of implementing 

“instructional techniques that require students to engage in activities that are not directed at 

schema acquisition” (Sweller, 1994, p. 299). Extraneous cognitive load thus impedes 

learning. According to this line of reasoning, worked examples are an effective means for 

skill acquisition because they help to avoid extraneous cognitive load. As a result, working 

memory resources are freed-up that can be used to engage in elaborative (germane) processes 

of schema construction. 

Unfortunately, it has often been observed that learners who study conventionally 

designed worked-examples usually do not spontaneously engage in these profitable 

elaboration processes (e.g., Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Gerjets & 

Scheiter, 2003; Gerjets, Scheiter, & Schuh, 2005; Gerjets, Scheiter, & Tack, 2000; Renkl, 

1997). Accordingly, without additional instruction support learners often tend to experience 

serious difficulties in example-based learning resulting in the acquisition of rather shallow 

representations of problem categories and solution procedures.  
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One reason for this problem might be that conventionally designed worked-examples 

tend to teach problem categories and category-specific solution procedures in a molar way by 

treating problem categories and solution procedures as the basic units of analysis that cannot 

be broken down any further. These examples can easily overwhelm learners because they 

have to consider numerous structural problem features and solutions steps at once resulting in 

a high level of intrinsic cognitive load. To counteract this problem, we developed a modular 

example format that focuses on the role of individual structural problem features and 

individual solution steps below the category level (Catrambone, 1994; Gerjets, Scheiter, & 

Catrambone, 2004). By designing worked examples in a modular way we intended to reduce 

task-related, intrinsic load, thereby increasing the probability that learners would have free 

cognitive resources at their disposal for germane processes.  

Molar versus Modular Examples: Reducing Intrinsic Cognitive Load 

Molar examples focus on the information that is related to the main components of 

problem-type schemas, namely on information related to problem-category membership, 

structural task features, and category-specific solution procedures. They are often found in 

textbooks on knowledge-rich and well-structured domains like physics, mathematics, or 

programming. For instance, Atkinson, Catrambone, and Merrill (2003) have noted that 

mathematical problem solving is often characterized by ‘computationally-friendly’ molar 

solution approaches in which multiple solution steps are collapsed into a single formula that 

represents the solution procedure. These ‘recipe-like’ formulas allow one to easily calculate 

solutions by simply inserting the correct variable values. In order to enable learners to apply 

these ‘recipes,’ the examples demonstrate how to categorize problems by considering 

multiple (and often abstract) structural task features. 

To demonstrate how conventional molar examples are usually designed, we will refer 

to the domain of probability word problems that was used in the two studies reported in this 
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paper. Probability word problems deal with calculating the probability of individual and 

complex events. The probability of some individual event in a random experiment can be 

calculated by dividing the number of acceptable outcomes by the number of possible 

outcomes. A series of random experiments – where each random experiment consists of a 

selection process that yields one individual event – results in a complex event. How the 

probability of complex events is calculated, can be explained by either using a molar example 

format or a modular example format (for an illustration see Table 1). 

According to the molar solution approach the probability of complex events is 

calculated by dividing the number of acceptable complex events by the number of possible 

complex events. Category-specific solution formulas are needed for calculating the number 

of possible complex events. In the materials used for experimentation we distinguish between 

four different problem categories (permutations and combinations, each with and without 

replacement) that differ with regard to two structural features. The first is whether the order 

in which elements are selected is important (yes: permutations; no: combinations); the second 

is whether selected elements are replaced after selection. The solution procedure illustrated 

by molar examples comprises four steps (see left column of Table 1), namely (1) identify task 

features, (2) apply formula, (3) insert values, and (4) calculate probability. 

This solution approach is a convenient and fast way of calculating complex-event 

probabilities, in particular if the problems to be solved contain large numbers. However, it 

might have some serious limitations. For instance, formulas are usually restricted to solving a 

narrow range of problems that fall into predefined problem categories corresponding to the 

solution formula. Additionally, the strong focus on problem categories might cause learners 

to “memorize stereotypic solutions to problems based on their categorization” (Reed, 1999, p. 

95) rather than thoughtfully considering the procedure. Finally, molar solution approaches are 

often characterized by a high level of relational complexity of the to-be-learned content, 
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because they require the learner to attend to multiple structural task features and multiple 

solution steps at the same time. Thus, molar examples tend to impose a high level of intrinsic 

cognitive load, which might prevent learners from engaging in profitable example 

elaborations.  

Therefore, we tried to find a way to reduce intrinsic cognitive load in example-based 

learning by abandoning the molar structure of conventionally designed worked-out examples 

and by presenting a more modular solution approach instead. This more modular solution 

procedure requires learners to keep only a limited number of elements active simultaneously 

in working memory. Modular examples avoid references to cognitively demanding molar 

concepts like problem categories, clusters of structural task features, and category-specific 

solution procedures. Solution procedures are broken down into smaller meaningful groups of 

solution steps that can be understood in isolation and that can be separately transferred when 

solving novel problems. Accordingly, the calculation of a complex event probability by 

means of a formula can be decomposed into a sequence of simpler calculations, that is, 

calculations of individual event probabilities. When calculating a particular individual event 

probability one has to take into account how the number of possible and acceptable choices 

change from the preceding to the current trial. These changes depend on whether previously 

selected objects are replaced or not after having been selected (i.e., problem with or without 

replacement), and on whether there is more than one acceptable choice in a given trial (i.e., 

order of selection important or not). Thus, the calculation of individual event probabilities 

allows one to directly relate individual structural task features and individual characteristics 

of solution steps without the need for prior problem categorization. This direct 

correspondence between structural features and solution steps makes it easier to adapt the 

modular approach to novel problems. The solution procedure we developed based on the 

modular approach is illustrated in the worked example in the right column of Table 1. In this 
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example the probability of a complex event is calculated by determining the probabilities of 

all individual events that make up the complex event (steps 1 to 3) and then multiplying these 

individual event probabilities to calculate the overall probability (step 4).  

The reasoning exemplified in the modular example format should help learners to 

understand relations below the category level that hold irrespective of category membership. 

What is even more important – in contrast to the category-based approach - is that this 

reasoning can be understood by holding only a rather limited amount of information in 

working memory simultaneously. Thus, this format should impose less intrinsic cognitive 

load than a molar example format and accordingly free cognitive resources that can then be 

used by learners to engage in example elaborations. 

In line with these hypothesized advantages, experimental evidence was found for the 

superiority of modular as compared to molar examples with regard to problem-solving 

performance, learning time, and cognitive load (Catrambone, 1994; Gerjets, Scheiter, & 

Catrambone, 2004; Gerjets, Scheiter, & Kleinbeck, 2004). The positive effects of modular 

examples were found regardless of the number of problem categories taught, the type of 

learning task, and the learners’ level of domain-specific prior knowledge. The results with 

regard to the lower levels of cognitive load imposed by modular examples seem to 

corroborate the idea that at least one of the advantages of modular examples is that solution 

procedures are broken down into smaller meaningful solution elements that can be 

understood in isolation without holding large amounts of information active in working 

memory. 

Despite these very encouraging results, the data for transfer performance on novel test 

problems indicated that there still is room for improvement. Accordingly, we aimed at further 

enhancing learning from molar as well as from modular worked-out examples by providing 

additional instructional explanations and by prompting self-explanations. 
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Providing Instructional Explanations and Prompting Self-Explanations: Increasing Germane 

Cognitive Load 

According to the instructional rationale of Cognitive Load Theory, reducing extraneous 

cognitive load (due to providing worked-out examples instead of practice problems) and 

reducing intrinsic cognitive load (due to providing modular instead of molar examples) can 

be seen as optimal preconditions for a subsequent stimulation of profitable (i.e., germane) 

example-elaboration strategies.  

Example elaborations may in particular be helpful for fostering learners’ skills in 

solving novel problems that do not fall into known problem categories and that require 

adapting learned procedures. Research on the role of example elaborations in learning has 

demonstrated that drawing inferences concerning the structure of example solutions, 

concerning the rationale behind solution procedures, and concerning the goals that are 

accomplished by individual solution steps (e.g., by relating example-specific information to 

more abstract information) are necessary ingredients of meaningful learning processes (Chi et 

al., 1989; Pirolli & Recker, 1994; Renkl, 1997).  

To investigate whether stimulating processes of example elaboration might further 

improve transfer performance of learners provided with modular or molar examples, two 

experimental studies were conducted. In these studies it was tested whether providing 

instructional explanations (Experiment 1) or prompting self-explanations (Experiment 2) 

might support learners in their attempts to elaborate on instructional examples, thereby 

improving their transfer performance. In both approaches the focus lies on a type of example 

elaborations that Renkl (1997) describes as principle-based self-explanations. These 

explanations are characterized by the assignment of “meaning” to the individual steps in the 

solution procedure. Principle-based explanations try to answer the question of why a 

particular solution step is appropriate to solve the current problem, both in terms of the 
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underlying principles that justify a step and in terms of the subgoal that the step aims to 

achieve in the solution procedure. This is similar to the process proposed in Catrambone's 

(1998) subgoal learning model, in which learners are hypothesized to be induced to self-

explain the purpose of a set of steps when these steps are grouped together. 

According to Renkl (1999, 2002) instructional explanations and self-explanations might 

be suitable in complementary situations as they can be characterized by a differential pattern 

of advantages and disadvantages during learning. Renkl postulates that – if appropriate – self-

explanations should be more effective than instructional explanations, and that learners 

should therefore rely on self-explanations as much as possible. To justify this claim, Renkl 

argues that self-explanations are better adapted to the individual prior knowledge of learners, 

that the timing of self-explanations is superior because they occur when they can be 

integrated into ongoing cognitive activities, and that self-explanations profit from a 

generation effect according to which self-generated information is better remembered than 

presented information (cf. Lovett, 1992). At least three problems are, however, associated 

with self-explanations (Conati & VanLehn, 2000; Renkl, 1999, 2002): First, students often 

overestimate their understanding of the examples, that is, they may suffer from so called 

illusions of understanding, and thus refrain from self-explanation activities. Second, even if 

they have noticed gaps in their knowledge, they may not be able to generate explanations that 

are helpful to overcome those gaps. Third, learners may not necessarily generate explanations 

that are helpful for learning. That is, there may be limitations regarding the quality of self-

explanations.  

Different conclusions can be drawn from these findings: First, rather than expecting 

self-explanations to occur spontaneously, learners should be prompted to engage in self-

explanatory activities. Second, in addition to prompts, scaffolds can be provided to ensure the 

availability of self-explanations that are suited to overcome knowledge gaps and that are of 
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sufficiently high quality. These scaffolds may include (adaptive) feedback in case of incorrect 

self-explanations (Aleven & Koedinger, 2002; Conati & VanLehn, 2000) and the provision 

of instructional explanations to exploit their specific advantages (Renkl, 1999, 2002), 

particularly for learners with very low knowledge prerequisites. Instructional explanations are 

usually correct and may help learners to overcome comprehension difficulties when they 

cannot master these difficulties on their own. Finally, Renkl assumes that instructional 

explanations can show learners that they do not yet have a sufficient understanding of the 

content to be learned, thereby avoiding illusions of understanding. 

However, scaffolding by means of feedback and instructional explanations is 

controversial (e.g., Conati & VanLehn, 2000; Schworm & Renkl, in press). For instance, Chi 

(2000) has argued that no feedback should be given in case of incorrect self-explanations, 

because it may obstruct self-explanatory activities triggered by discovering flaws in one’s 

knowledge and aimed at fixing those flaws. Similarly, instructional explanations can even be 

harmful because they hinder learners in generating explanatory justifications of solution steps 

by themselves (Kulhavy, 1977). For instance, Schworm and Renkl (in press) demonstrated 

that instructional explanations reduced the students’ self-explanation activities and thus 

learning outcomes. Similarly, Aleven and Koedinger (2000) have noted that students using 

their computer-based training tool asked directly for instructional help without attempting to 

generate an explanation by themselves. This has led several authors to conclude to allow for 

as much self-explanatory activities as possible and to provide only as many scaffolds as 

absolutely necessary (Conati & VanLehn, 2000; Renkl, 1999, 2002). One open question with 

regard to this issue is how elaborated and detailed instructional explanations should be in 

order to be more helpful than hindering. 

Beyond prior knowledge, the availability of cognitive resources that can be devoted to 

generate self-explanations may affect whether self-explanations prompts or different types of 
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instructional explanations are the more effective instructional method in a given situation. 

Because there are distinct differences regarding the level of intrinsic cognitive load imposed 

by either molar or modular worked examples, we expect differential effects with regard to 

whether learning from either example format can be further enhanced by providing 

instructional explanations or by prompting self-explanations. 

It is important to note that we are interested in finding ways of improving learning from 

both example formats, because both solution approaches illustrated in these examples may 

contain distinct advantages. On the one hand, fostering understanding of molar examples may 

be important, because being able to apply category-specific solution procedures like formulas 

can – once the general rationale of probability problems is sufficiently understood – be very 

helpful for specific tasks. For instance, formulas provide a fast and convenient way to solve 

problems that contain large numbers. The applicability of the modular approach is rather 

limited in this case due to the large amount of error-prone computation necessary. On the 

other hand, the modular approach may help to foster the understanding of the general 

rationale of probability problems, which is a prerequisite for applying formulas. Thus, we 

believe that true problem-solving expertise can be conveyed only by a combination of 

modular examples that teach understanding and molar examples that allow for routine 

problem solving – together with the appropriate prompts and scaffolds for each example 

format.  

With regard to the differential effectiveness of these prompts and scaffolds we expect 

that providing instructional explanations should be especially helpful for learners presented 

with molar examples. This should be the case because instructional explanations should 

support learners in coping with comprehension difficulties due to the high relational 

complexity of the molar solution approach. The modular solution approach, however, might 

be sufficiently easy to understand already, thus instructional explanations probably will not 
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enhance learning any further. 

On the other hand, prompting self-explanations should mainly be helpful if there are 

sufficient cognitive resources available for engaging in explanatory activities that are 

associated with germane cognitive load. Thus, self-explanation prompts should be more 

effective for instructional conditions where intrinsic cognitive load is low as it is the case for 

modular worked-out examples, but not for molar ones. Learners with molar examples might 

suffer from cognitive overload when trying to understand the complex solution procedures by 

themselves.  

These assumptions can be derived from the basic instructional-design rationale of 

Cognitive Load Theory, according to which obstacles in instruction should first be removed 

(i.e., by reducing extraneous and intrinsic cognitive load) before higher-level cognitive 

processes can be productively stimulated, thereby fostering germane cognitive load. The role 

of instructional explanations and self-explanation prompts in learning from molar and 

modular examples was investigated in two experimental studies. 

Experiment 1 

Method 

Participants 

Ninety-six students (63 female, 33 male; mean age 24.64 years, SD = 6.28) from 

different majors at the University of Tuebingen in Germany participated in this experiment 

for either course credit or payment. While most students had been taught elementary concepts 

of probability theory in high school, only very few had dealt with calculating complex event 

probabilities in their university studies.  

Materials and Procedure 

A computer-based learning and problem-solving environment (HYPERCOMB) was used 

that teaches students how to calculate the probability of complex events. The environment 
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consisted of a technical instruction on how to use the system, a short introduction to the 

domain, an example-based learning phase, and a subsequent test phase. Participants first 

completed a multiple-choice questionnaire with 11 questions on concepts and definitions that 

are important to know as a prerequisite for understanding how the calculation of the 

probability of complex events works. Next, participants were given a technical introduction 

to the HYPERCOMB system and to the experiment. After that, the general rationale behind 

calculating the probability of complex events was explained in a short introduction to the 

domain. 

In the subsequent example-based learning phase, learners were told that they had to 

acquire knowledge on four different problem categories, where each category was explained 

by means of two worked-out examples. The worked-out examples, which had been 

constructed by the authors of the paper, consisted of a problem statement and a step-by-step 

solution procedure. The eight worked-out examples were presented in a linear order, where 

the sequence of problem categories was as follows: permutation without replacement - 

permutation with replacement - combination without replacement - combination with 

replacement. For instructional reasons, two different types of cover stories were used for the 

problem statements: The first worked-out example of each problem category always was a 

so-called urn example that dealt with selecting marbles from an urn. The second worked-out 

example of each problem category was a so-called daily-life example, which was related to 

situations that might occur in real life and which, therefore, was richer with regard to the 

cover story it was embedded in. Whereas the surface features were kept constant across 

problem categories for the urn examples, they varied across categories for the daily life 

examples, where each example was related to a different situation. These variations in cover 

stories were supposed to enable profitable processes of example comparison within and 

across problem categories (for an extensive discussion of the role of surface features for 
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schema induction, see Quilici & Mayer, 1996; Scheiter & Gerjets, 2005; Scheiter, Gerjets, & 

Schuh, 2004). The numbers mentioned in the examples were of comparable size. Moreover, 

we aimed at keeping the complexity of the wording comparable across the different 

examples. Thus, no systematic differences in example difficulty can be expected. Participants 

could go back and forth between the examples by means of navigation buttons contained in 

the environment. 

Depending on the experimental condition the solution procedure illustrated by these 

examples was either based on the molar or on the modular solution approach. Additionally, 

the amount of instructional explanations was varied across conditions. When a participant felt 

he or she had studied the examples for a sufficiently long time, he or she could start working 

on the test problems. The instructional materials were not available during problem solving. 

Before solving the test problems, learners had to give an estimate of the cognitive load 

and related variables (i.e., feeling of success, stress) they had been experiencing during 

learning (see ‘dependent measures’ for details). Following this questionnaire, participants 

were instructed to solve nine probability problems for which the transfer distance was varied. 

The test problems were presented in a linear order from which participants could not deviate. 

Participants had a calculator available in order to ensure that their answers would not be 

inflated by calculation mistakes. The length of the experimental sessions depended on the 

time the participants took for studying the examples and solving the test problems. 

Design and Dependent Measures.  

As a first independent variable the solution approach illustrated by the worked-out 

examples was varied between subjects. The examples were either presented in the modular or 

the molar example format. As a second independent variable the amount of instructional 

explanations was varied between subjects resulting in three levels of elaboration (cf. Table 1). 

The instructional examples with highly-elaborated instructional explanations provided 
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detailed justifications for why a solution step had been chosen. In an intermediate version 

facts concerning the solution steps were mentioned (e.g., individual-event probabilities, 

variable values), but no further justifications were given (medium-elaborated), while in a 

condensed version only the mathematical information was given without providing any 

verbal explanations at all (low-elaborated). The design of the explanations was based on a 

careful task analysis conducted by the authors to ensure that they provided information 

relevant to understanding each of the solution approaches. The highly-elaborated 

explanations illustrated the reasoning of a proficient problem solver when solving a problem. 

For the resulting 2 x 3 design, 18 students were assigned to the modular approach/low-

elaborated condition, 15 to the modular approach/medium-elaborated condition, 17 to the 

modular approach/highly-elaborated condition, 15 to the molar approach/low-elaborated 

condition, 17 to the molar approach/medium-elaborated condition, and 14 to the molar 

approach/highly-elaborated condition. 

The dependent measures were learning time (in minutes spent in the example-

based learning phase), frequency of example retrieval, cognitive load, problem-solving 

time (in minutes), and problem-solving performance for three isomorphic and six novel 

test problems. The frequency of example retrieval indicated how many examples a 

learner had accessed. The minimum value of this variable was eight, because there 

were eight examples available in each condition that had to be processed by learners. A 

value above eight indicated that the learner had retrieved examples multiple times. 

Cognitive load was assessed by means of a modified version of the NASA-TLX (Hart 

& Staveland, 1988), which had been successfully used in order to distinguish between 

different aspects of cognitive load in prior studies (Gerjets, Scheiter, & Catrambone, 2004). 

This measure consisted of three cognitive load items plus two additional items assessing 

feelings of success and experienced stress during learning. The cognitive load items were: 
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‘task demands’ (how much mental and physical activity was required to accomplish the 

learning task, e.g., thinking, deciding, calculating, remembering, looking, searching etc.), 

‘effort’ (how hard the participant had to work to understand the contents of the learning 

environment), and ‘navigational demands’ (how much effort the participant had to invest to 

navigate the learning environment). According to Cognitive Load Theory (Sweller et al., 

1998) cognitive demands are caused by inherent properties of the learning task (intrinsic 

cognitive load), higher-level processes for achieving a deeper understanding – as reflected in 

the availability of sophisticated and automated schemata (germane load), and activities not 

directed to learning such as decision processes required for navigation and information 

selection (extraneous load). Thus, a mapping is assumed between the theoretical assumptions 

of Cognitive Load Theory and the items of the modified version of the NASA-TLX. In 

addition, learners had to rate how successful they felt in understanding the contents and how 

much stress they had experienced during learning. All items had to be rated on a scale from 0 

(very low) to 100 (very high).  

For each of the nine test problems, one point was assigned for a correct answer; no 

partial credit was given. Answers were also scored as correct if a student had set up the 

equation without mistakes, but had not determined the resulting probability as a final answer. 

The sums across the three isomorphic problems and across the six novel problems were each 

transformed into a percentage for ease of interpretation. Isomorphic test problems differed 

from the instructional examples only with regard to their surface features. Novel test 

problems were constructed in a way that two complex-event probabilities had to be 

considered, the outcomes of which had to be multiplied in order to calculate the required 

probability. An example of a novel test problem would be: 

At a soccer stadium, there are two dressing rooms for the two opposing teams. The 11 

players from Oxford wear T-shirts with odd numbers from 1 to 21 and the 11 players 
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from Manchester have even numbers from 2 to 22. Because the aisle from the 

dressing rooms is very narrow only one player at a time can enter the field. The 

players of the two teams leave their rooms alternately with a player from Oxford 

going first. What is the probability of the first five players entering the field having 

the numbers 5, 2, 13, 8, and 1 (i.e., the first has the number 5, the second has the 

number 2, and so on)? 

For the 11 items of the declarative pretest one point was assigned for every correct answer 

and the sums across all items were transformed into a percentage. 

Results and Discussion 

The means and standard deviations of all dependent measures are provided in Table 2. 

We report Cohen’s f as a measure of effect size. According to Cohen (1988) an effect size of 

.10 corresponds to a small effect, .25 to a medium, and .40 to a large effect. 

We first tested whether learners were comparable across the six experimental 

conditions with regard to prerequisite knowledge by means of an ANOVA (Solution 

Approach x Amount of Instructional Explanations). There were no significant main effects, 

nor an interaction between the two factors (all Fs < 1).  

The ANOVA (Solution Approach x Amount of Instructional Explanations) analysing 

the time learners spent on processing the worked-out examples revealed that learning with the 

molar approach took almost double the time than learning with the modular approach (F(1, 

90) = 48.24, MSE = 31.14, p < .001, f = .73). Moreover, the learning time differed slightly as 

a function of the amount of instructional explanations provided (F(1, 90) = 2.57, MSE = 

31.14, p = .08, f = .24). Posthoc Tukey tests revealed that learners took slightly less time to 

study low-elaborated examples than highly-elaborated examples (p < .10), while there were 

no time differences between medium- and low-elaborated examples ( p > .10) or medium and 
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highly-elaborated examples (p > .90). There was no interaction between the two factors (F(2, 

90) = 1.17, MSE = 31.14, p = .32, f = .16).  

The increase in learning time in the molar example conditions might go back at least 

partly to a more frequent retrieval of examples (F(1, 90) = 8.81, MSE = 61.89, p = .004, f = 

.31). In addition, the frequency of example retrieval depended on the amount of instructional 

explanations (F(1, 90) = 5.20, MSE = 61.89, p = .007, f = .34). Posthoc Tukey tests showed 

that retrieval frequency was greater in the low-elaborated conditions compared to the 

medium-elaborated example conditions (p < .05) and highly-elaborated conditions (p < .05), 

whereas there were no differences in example retrieval between medium- and highly-

elaborated examples (p > .90). Again, no interaction could be observed (F < 1). 

In a next step the time needed for problem solving, the problem-solving performance, 

and the cognitive load questionnaire data were analysed as a function of solution approach 

and amount of instructional explanations. There were no significant effects for problem-

solving time (Solution Approach: F(1, 90) = 1.98, MSE = 134.14, p = .16, f = .15; Amount of 

Instructional Explanations/interaction: F < 1). With regard to problem-solving performance, 

participants solved more isomorphic problems correctly after they had studied modular 

examples (F(1, 90) = 12.82, MSE = 1169.73, p = .001, f = .38). There was no effect of 

providing different amounts of instructional explanations nor was there an interaction (both 

Fs < 1). The same pattern of results could be observed for novel problems: Students in the 

modular-example conditions solved more novel problems correctly than students in the 

molar-example conditions (F(1, 90) = 20.28, MSE = 737.10, p < .001, f = .47). Again, there 

were no effects of the amount of instructional explanations, nor an interaction effect (both Fs 

< 1).  

The cognitive load data were in line with this clear superiority of a modular solution 

approach for acquiring problem-solving skills. Learners studying modular worked-out 
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examples reported lower task demands (F(1, 90) = 9.53, MSE = 528.92, p = .003, f = .34), 

less effort (F(1, 90) = 9.10, MSE = 645.12, p = .003, f = .32), and, a bit surprisingly, lower 

navigational demands (F(1, 90) = 6.18, MSE = 373.32, p = .02, f = .26). This latter result 

might be due to learners in the modular conditions having spare working memory capacity 

available for navigational demands due to the reduced cognitive load imposed by these 

materials. Moreover, learners in the modular-example conditions rated themselves as being 

more successful in understanding the contents (F(1, 90) = 3.86, MSE = 420.93, p = .05, f = 

.21). The subjective cognitive load and feeling of success was also affected by the amount of 

instructional explanations (task demands: (F(1, 90) = 2.49, MSE = 528.92, p = .09, f = .23; 

effort: (F(1, 90) = 2.90, MSE = 645.12, p = .06, f = .25), and feeling of success: F(1, 90) = 

6.92, MSE = 420.93, p = .002, f = .39. Posthoc Tukey tests showed that students rated 

learning from low-elaborated worked-out examples as being more demanding and effortful 

than studying highly-elaborated examples (task demands: p < .10 and effort p < .10). For both 

variables, there were no differences between low- and medium-elaborated examples (task 

demands: p > .40; effort: p > .20) or between medium- and highly-elaborated examples (task 

demands: p > .50; effort: p > .70). Additionally, they felt being more successful when 

learning from medium-elaborated or highly-elaborated than from low-elaborated examples 

(both ps < .05) – however, this subjective experience was not reflected in respective 

performance differences. There were no reliable differences between medium- and highly-

elaborated examples (p > .70). There were no interactions for any of the variables (all Fs < 

1). Finally, students' experience of stress during learning was not affected by any of the 

experimental manipulations (Solution Approach: (F(1, 90) = 2.37, MSE = 790.87, p = .13, f = 

.16; Amount of Instructional Explanations and interaction: both Fs < 1). 

To conclude, we confirmed prior findings showing a clear superiority of a modular 

compared to a molar solution approach (Gerjets, Scheiter, & Catrambone, 2004). Learners 
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who studied modular examples took less time for learning, retrieved fewer examples, solved 

more problems correctly, and reported less cognitive load, and a higher feeling of success. 

With regard to the amount of instructional explanations, however, no clear benefits could be 

observed for providing more instructional explanations concerning the rationale behind the 

solution steps of both solution approaches. In fact, more elaborated examples were less 

efficient than low-elaborated examples in that they took more time for studying while not 

being associated with better problem-solving performance. With regard to cognitive load, 

however, more elaborated examples reduced the subjective task demands and the required 

effort to understand the contents, and (erroneously) increased learners’ subjective feeling of 

success during learning.  

It thus seems that while students learn better from modular worked-out examples, both 

groups did not benefit from the instructional support that was provided in the medium and 

highly-elaborated conditions. The instructional explanations might have been superfluous for 

both solution approaches, but for different reasons. In line with our prior assumption, learners 

studying modular examples seemed to have sufficient cognitive resources at their disposal to 

engage in effective self-explanatory activities on their own. Although they invested more 

time in studying elaborated examples, this effort was obviously not necessary to ensure their 

ability to understand the rationale behind the solution approach. Learners with molar 

examples, on the other hand, possibly would have benefited from carefully processing the 

instructional explanations provided as predicted; however their learning time data revealed 

that they refrained from thoroughly doing so. It can be assumed that those students suffered 

from a well-known shortcoming of instructional explanations, namely the impression of 

having been able to produce the respective justifications of solutions steps by themselves. 

These feelings of understanding are frequently illusionary (Renkl, 1999, 2002). Our findings 

thereby resemble results obtained by Aleven and Koedinger (2000) and Kulhavy (1977) 
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according to which instructional explanations may reduce the effort learners are willing to 

invest in understanding the instructional materials. Instructional explanations may thus also 

hinder self-explanatory activities (Schworm & Renkl, in press).  

In Experiment 2 we wished to explore whether instructional materials could be further 

improved by prompting learners to provide detailed self-explanations for the solution steps. 

Thus, we replaced every second example by a medium-elaborated example combined with a 

prompt that required learners to provide more detailed self-explanations. Our main 

assumption was that prompting self-explanation activity should further improve learning for 

participants using modular examples, who – in line with the findings from Experiment 1 – are 

supposed to have sufficient cognitive resources available to generate these explanations by 

themselves. Moreover, based on cognitive-load considerations we had initially expected that 

students learning from molar examples would lack the necessary resources and thus would 

not benefit from self-explanation prompts. Based on the results of Experiment 1, however, 

one might also argue that self-explanation prompts for molar examples can be a helpful 

means to reduce possible illusions of understanding that might have been responsible for the 

ineffectiveness of instructional explanations. If students learning from molar examples were 

forced to generate explanations on their own, they might notice their lack of understanding 

and as a consequence might invest more time and effort in processing the examples. Thus, it 

is not clear whether self-explanations prompts for molar examples will be ineffective because 

of a lack of cognitive resources for the respective cognitive processes or whether they will be 

effective because they trigger a deeper processing of the instructional materials.  

Experiment 2 

Method 

Participants 
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Ninety-one students (46 female, 45 male; mean age 19.27 years, SD = 1.36) from 

different majors at the Georgia Institute of Technology participated in this experiment for 

course credit. All students were familiar with basic concepts of probability theory.  

Materials and Procedure 

The example-based learning phase of HYPERCOMB was modified for the current 

experiment while all other aspects were the same as in Experiment 1. In this modified 

learning phase, the solution procedure was presented either by using the molar or the modular 

solution approach depending on the experimental condition. The solution procedures were 

explained to half of the participants by means of two worked-out examples for each of the 

four problem categories that contained highly-elaborated instructional explanations. These 

experimental conditions were identical to the respective conditions of Experiment 1. The 

other half of the participants received highly-elaborated urn examples for each problem 

category; however, for each of the daily-life examples they were prompted by means of 

questions contained in the examples to generate these elaborations by themselves. They 

received feedback for every answer given (for details see “design and dependent measures”). 

Design and Dependent Measures 

As a first independent variable the solution approach illustrated by the worked-out 

examples was varied between subjects. The examples were either presented in the modular or 

the molar solution approach. As a second independent variable it was manipulated whether 

all eight worked-out examples were either highly-elaborated or whether learners were 

prompted to generate these elaborations by themselves for every second example (self-

explanation prompts). Sample materials for the prompting conditions are provided in Figure 1 

(for molar examples) and Figure 2 (for modular examples). 

In the conditions with prompts, the first worked-out example of each problem category 

(i.e., the urn example) always contained a highly-elaborated explanation of the solution 
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procedure. For the second example (i.e., the daily-life example), however, the solution 

procedure was presented in the medium-elaborated version, that is, without further 

instructional explanations and justifications for why the solution step had been selected. For 

the first solution step, learners were then prompted (by means of a question that depended on 

the solution approach) to provide these elaborations by themselves (cf. Figure 3 for a detailed 

illustration of the prompting procedure). The answer had to be typed into a field and 

participants then clicked a "evaluate your answer" button. On clicking this button, a feedback 

page appeared which contained the learner’s answer and an expert’s answer provided by the 

system. This expert answer consisted of exactly the same information that had been given in 

the highly-elaborated examples. Learners were asked to compare their answer to this expert 

answer. Once they were done comparing the two answers, another navigation button allowed 

them to go back to the example they had been working on. The presentation of this example 

had, however, changed in two important ways compared to the first time learners had seen it. 

First, the expert’s elaborations for the first solution step had been added to the description of 

this step, so that this step now was displayed in the highly-elaborated format. Second, 

learners were now prompted to go through the same process for the second solution step. 

That is, they now saw a question that asked for justifications with regard to the second 

solution step, typed in their answer to the question, received the expert’s answer as feedback, 

were asked to compare their answer to this expert answer, and were led back to the example, 

which now contained the elaborations for the second solution step and a prompt for the third 

solution step (in case there was one). This cycle had to be done as many times as there were 

solution steps and could not be terminated before the worked-out example contained highly-

elaborated explanations for all solution steps. Once this was the case, the urn example for the 

next problem category could be accessed, which was again presented as a highly-elaborated 

example. 
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The questions that were used to prompt learners to provide elaborations depended on 

the solution approach taken. In the modular approach the same question was used for every 

solution step, namely ‘Why is the numerator [VALUE OF NUMERATOR], and the 

denominator [VALUE OF DENOMINATOR] in this step?’ For the molar solution approach 

the questions were (1) ‘Why is this a [NAME OF CATEGORY] problem?’ (for the first 

solution step), (2) ‘What do n and k stand for in this example?’ (for the second solution step) 

and (3) ‘Why does n equal [VALUE OF N] and k equal [VALUE OF K]?’ (for the third 

solution step). In both solution approaches no questions were asked for the final solution step, 

in which the overall probability of the complex event and thus the final solution was 

presented. 

In the resulting 2 x 2 design, 21 participants were assigned to the modular/highly-

elaborated condition, 22 to the molar/highly-elaborated condition, 25 to the modular/prompts 

condition, and 23 to the molar/prompts condition. 

The dependent measures were the same as in Experiment 1. 

Results  

The means and standard deviations of all dependent measures are provided in Table 3. 

With regard to the domain-specific prerequisite knowledge as assessed by the pretest, 

learners were comparable across instructional conditions as confirmed by a 2 x 2 ANOVA 

(Solution Approach: F < 1; Prompts: F(1, 87) = 1.81, MSE = 325.30, p = .18, f = .14; 

interaction: F < 1). The level of prerequisite knowledge in Experiment 2 was comparable to 

that in Experiment 1. 

Similar to Experiment 1, learning time was almost doubled in the molar compared to 

the modular solution-approach conditions (F(1, 87) = 30.02, MSE = 26.16, p < .001, f = .45). 

Moreover, prompting learners for self-explanations increased learning time substantially 

(F(1, 87) = 64.23, MSE = 26.16, p < .001, f = .75). There was no interaction between the two 
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factors (F < 1). The longer learning times in the molar-example conditions were not 

exclusively due to a more frequent retrieval of examples as an analysis of the frequency of 

example retrieval revealed (F(1, 87) = 2.33, MSE = 49.58, p = .13, f= .15). Interestingly, 

prompting learners for self-explanations reduced the frequency by which learners (re-)viewed 

examples compared to the highly-elaborated conditions (F(1, 87) = 9.20, MSE = 49.58, p = 

.003, f = .32). In addition, a marginally significant interaction was observed for the frequency 

of example retrieval (F(1, 87) = 2.77, MSE = 49.58, p < .10, f = .17).  

Problem-solving times were longer in the molar compared to the modular solution 

approach (F(1, 87) = 14.73, MSE = 54.99, p < .001, f = .40). Moreover, extended problem-

solving times were observable for students who had been prompted to generate self-

explanations (F(1, 87) = 6.47, MSE = 54.99, p < .01, f = .25). There was no interaction 

between the two factors (F < 1). 

Regarding problem-solving performance, students solved more isomorphic problems 

correctly after learning with modular examples (F(1, 87) = 10.51, MSE = 1281.42, p = .002, f 

= .34), while the availability of self-explanation prompts did not have any impact on 

performance for isomorphic problems (F < 1). There was no interaction between the two 

factors (F(1, 87) = 1.61, MSE = 1281.42, p = .21, f = .13). However, the percentage of 

correctly generated self-explanations correlated positively with performance for isomorphic 

problems in the condition with molar examples (r = .52, p = .01). The respective correlation 

was not significant in the condition with modular examples (r = -.04, p > .80).  

There was the same pattern of main effects for solving novel problems (Solution 

Approach: F(1, 87) = 4.98, MSE = 845.56, p = .03, f = .23; Prompts: F < 1). In addition, there 

was a significant interaction (F(1, 87) = 4.42, MSE = 845.56, p = .04, f = .22) revealing that 

self-explanation prompts – compared to highly-elaborated examples – did not improve 

transfer performance when learning with molar examples (t(43) = 0.94, p = .36, d = 0.28), 
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while prompts led to deteriorations in performance in the modular-example condition (t(44) = 

-2.25 p = .03, d = 0.66). To put it the other way around: modular examples were still superior 

to molar examples with regard to transfer performance on novel problems – but only in the 

conditions without self-explanation prompts. There was no significant correlation between 

the number of correctly generated self-explanations and transfer performance on novel 

problems (condition with molar examples: r = .31, p > .15; condition with modular examples: 

r = .02, p > .90). 

The cognitive load data supported part of the problem-solving data, as modular 

examples were rated more favourably than molar examples (task demands: F(1, 77) = 5.91, 

MSE = 437.97, p = .02, f = .28; effort: F(1, 77) = 5.55, MSE = 371.88, p = .02, f = .27; feeling 

of success: F(1, 77) = 5.56, MSE = 392.91, p = .02, f = .27). There were no main effects of 

prompts or interactions for the aforementioned variables (all Fs < 1). No significant 

differences could be observed for navigational effort (Solution Approach: F(1, 77) = 1.40, 

MSE = 230.68, p = .24, f = .13; Prompts: F(1, 77) = 1.08, MSE = 230.68, p = .30, f = .12; 

interaction: F < 1). The results for the subjective stress ratings seemed suited to explain the 

findings obtained regarding problem-solving performance for novel problems: There were no 

main effects of the solution approach for this variable (F < 1), but prompts slightly increased 

feelings of stress (F(1, 77) = 3.27, MSE = 403.03, p = .07, f = .20). A marginally significant 

interaction (F(1, 77) = 3.26, MSE = 403.03, p = .08, f = .20), which corresponded to a 

medium effect, revealed that the stress learners’ experienced was unaffected by self-

explanation prompts in the molar condition (t(39) = -0.02, p = .98, d = 0.01). However, stress 

was increased by prompts in the modular conditions (t(38) = 2.66, p = .01, d = 0.84). Thus, 

prompts were perceived as stressful and reduced performance for novel problems in this 

condition.  
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General Discussion 

In prior work we have successfully demonstrated that modular examples – where 

solution procedures are broken down in smaller meaningful steps – are superior to molar 

examples that convey knowledge on problem categories together with category-specific 

solution recipes (Gerjets, Scheiter, & Catrambone, 2004). This superiority was found for a 

variety of performance and cognitive load measures and proved to be robust across a variety 

of factors such as the number of problem categories taught and learner background. These 

findings were replicated in Experiment 1 and 2 where learners in the modular example 

conditions took less time for learning, showed better problem-solving performance for 

isomorphic as well as for novel test problems, and reported lower cognitive demands 

imposed by the learning materials.  

Initially, we had assumed that instructional explanations might foster better 

understanding of molar examples. Contrary to this expectation the results of Experiment 1 

indicated that instructional explanations did not improve performance for participants who 

studied molar or modular examples although learners had the erroneous impression of being 

more successful when studying examples with a higher amount of instructional explanations. 

Learners also reported lower task demands in the more elaborated conditions. 

As a possible explanation we suggest that the instructional explanations were 

superfluous for both solution approaches, but for different reasons. As initially assumed, 

learners studying modular examples seemed to have sufficient cognitive resources at their 

disposal to engage in effective self-explanatory activities on their own and thus might not 

need instructional explanations. Learners with molar examples, however, refrained from 

thoroughly processing the elaborations possibly because they suffered from illusions of 

understanding (Renkl, 1999, 2002). While we had thought that these illusions of 

understanding might be overcome by prompting learners to generate these explanations on 
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their own, Experiment 2 proved otherwise. Even worse, self-explanation prompts in the 

modular-example conditions led to a performance decrement. Initially we had expected that 

due to the low level of intrinsic cognitive load induced by this approach, learners might have 

sufficient cognitive resources available and might thus benefit from self-explanation prompts. 

It seems that while the assumption concerning their experienced cognitive load is true, the 

consequences drawn from that are not: Learners in the modular-examples condition were 

forced to generate self-explanations (and were given feedback for these explanations) for 

materials that they – according to the results of Experiment 1 – had already sufficiently 

understood. As Halabi and Tuovinen (2002, p. 36) have noted “feedback on well understood 

concepts is superfluous, or redundant, and usually interferes with learning”. Thus, our 

findings are consistent with the redundancy effect according to which repeatedly processing 

the same information might hinder rather than help learning (Kalyuga, Chandler, & Sweller, 

1999). In line with this interpretation, learners provided with modular examples reported 

higher stress when prompted for self-explanations. 

Moreover, there may have been problems with the design of the prompts and of the 

feedback (i.e., the instructional explanations) given to learners. For instance, Atkinson and 

Renkl (2001) did not observe any beneficial effects of instructional explanations, which were 

located on a different page and thus not integrated into the worked examples. Similarly, in 

our second experiment the feedback learners received for their self-explanations was 

presented on a separate page, because we wanted learners to notice that now a different 

activity than simply reading the example was expected of them. While we also integrated the 

feedback into the worked examples in a next step, we may have nevertheless caused a split-

attention by this design. A possible alternative would be to present the feedback in a pop-up 

window on the same page as the example in a subsequent experiment.  

A second design issue concerns the fact that learners were forced to type in their 
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answers rather than select from a list of alternative answers. Unless the system is able to 

recognize natural language, no adaptive feedback can be provided to learners in case free 

responses are given to the prompts. Thus, learners in our case were forced to process the 

feedback irrespective of whether their self-explanation had been wrong or right. We had 

deliberately opted for this design compared to a multiple-choice format for at least three 

reasons. First, if learners are presented with wrong alternatives, they might remember these 

wrong answers later on without being able to tell whether they were wrong or not. Second, 

selecting from a predefined set of alternatives requires less cognitive activity than 

formulating one’s own answer; thus, advantages of self-explanation prompts due to the 

generation effect (Lovett, 1992) might diminish. Third, in a prior experiment (Gerjets, 

Scheiter, & Schuh, 2005) we had not found any positive effects of a multiple-choice 

prompting method. However, a multiple-choice format has the distinct advantage of allowing 

for adaptive feedback depending on the answer given, which may explain the positive results 

achieved by this prompting method in the work by Atkinson, Renkl, and Merrill (2003) or 

Conati and VanLehn (2000). A multiple-choice format still seems to be a more effective 

method than refraining from giving any feedback to self-explanations presented in natural 

language, as has been done in a study by Hausmann and Chi (2002). 

A third design issue refers to the number of prompts presented to learners. 

Participants in our experiment received 12 prompts in the molar condition, and 13 in the 

modular condition. In the current experiment we had opted to present prompts for all solution 

steps of each of the four examples. In both solution approaches, this may have caused some 

redundancy across examples as a very similar reasoning had to be applied to respond to the 

prompts irrespective of the problem category illustrated by a specific example. Moreover, for 

the modular solution approach there may have been redundancy within each example, as the 

reasoning for each solution step is very similar due to the reiterative structure of this 
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approach. This may also explain that learners felt stressed (or annoyed) by having to respond 

to very similar prompts over and over again. An alternative to presenting prompts for all 

solution steps and examples would be to reduce the number of prompts in the example 

sequence. This can be done either by prompting only for explanations for one or two solution 

steps within each example or by using a fading approach, in which the number of prompts is 

increased or decreased within the example sequence (see for a similar approach to foster 

anticipative reasoning Renkl, Atkinson, & Maier, 2000; Renkl, Atkinson, Maier, & Staley, 

2002). In order to overcome this problem of too many prompts, Stark (1999) has suggested 

that it would be best to allow learners to decide whether to produce self-explanations or not. 

However, in our own experiments (Gerjets et al., 2005; Scheiter, Gerjets, Catrambone, & 

Vollmann, in prep.) this learner control caused students to not use the prompts and the 

feedback option. 

The fact that the instructional elaborations that were either provided by the system 

(Experiment 1) or were to be generated by students (Experiment 2) did not improve 

performance might also suggest that these explanations were of low quality and thus did not 

aid learning. However, we assume that the instructional explanations were helpful to 

students, but that students needed additional instructional support to cope with the challenges 

imposed by novel problems. Thus, students seem to be able to understand the rationale of 

solution procedures to an extent that allows them to solve isomorphic problems once the 

information relevant to solving the example problem is already available. For instance, when 

a learner is told which structural features are part of the problem, he or she seems to be able 

to explain why this problem is characterized by these structural features. This assumption is 

supported by the fact that in both solution approaches more than 80 percent of the self-

explanations were correct. However, students might still be unable to identify the structural 

features or variable values by themselves. To use the terms introduced by Renkl (1997), 
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learners might already be good principle-based explainers, but they might still lack the ability 

to anticipate solution steps.  

According to this reasoning, a substantial decrease in intrinsic cognitive load might 

already be sufficient to allow students a basic understanding of the materials – so that the 

type of elaborations prompted in our experiments yields no further performance 

improvements. In this case, one has to guarantee that learners are prompted to apply 

cognitive processes that go beyond their initial understanding and are thus not redundant to 

what they already know. Thus, the question arises of whether the far transfer performance of 

students learning with modular examples can better be served by supporting their problem-

solving abilities rather than their conceptual understanding. For instance, the provision of 

completion problems (Paas, 1992; Van Merriënboer, 1990) might be more appropriate for 

these students to improve their knowledge than eliciting principle-based self-explanations. 

Similarly, Stark (1999) “forced” learners to anticipate solution steps. Stark omitted text and 

inserted blanks into the solution steps of worked examples. The learners’ task was to try to 

name what was missing. After attempting to fill in the blanks, the students received feedback 

on the correctness of their responses. Stark found that compared to studying complete 

examples, studying these incomplete examples fostered explanations and reduced ineffective 

self-explanations, such as rereading or paraphrasing. As a consequence, incomplete examples 

enhanced the transfer of learned solution methods. 

This kind of reasoning has a variety of different consequences for further research: 

First, we need to investigate whether incomplete problems are a more appropriate means to 

foster transfer performance, because they elicit anticipative reasoning rather than principle-

based explanations. Second, the question arises whether the effectiveness of the instructional 

methods investigated in this paper are moderated by prior knowledge. Renkl (1997) 

demonstrated that anticipative reasoners compared to principle-based explainers possessed a 
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higher level of prior knowledge, which might be a prerequisite for anticipative reasoning. 

Accordingly, the instructional explanations and self-explanations might be more suited for 

learners with very low levels of prior knowledge, who lack the necessary conceptual 

understanding. On the other hand, completion problems might be more appropriate for 

learners with higher levels of prior knowledge. Third, if modular examples support the 

acquisition of some initial conceptual understanding, we need to investigate ways of 

combining the two solution approaches. In particular, it is worthwhile studying whether 

modular examples convey the conceptual understanding that the molar approach requires, 

before learners can benefit from the computational-friendly solution procedure enabled by the 

use of complex formulas.  
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Table 1 

Molar and Modular Example Formats Used for Experimentation 

100M-SPRINT EXAMPLE  
 

At the Olympics 7 sprinters participate in the 100m-sprint. What is the probability  
of correctly guessing the winner of the gold, the silver, and the bronze medals?

MOLAR EXAMPLE FORMAT MODULAR EXAMPLE FORMATT

IDENTIFY TASK FEATURES 
This problem is a permutation-without-replacement 
problem. Problems of this type have two important 
features: First, the order of selection is important, 
and second, there is no replacement of selected 
elements. We are not interested only in finding out just 
which 3 of the 7 sprinters win medals, rather we want 
to know specifically which sprinter wins which medal. 
Therefore, the order of selection matters. A sprinter can 
win at most only one medal. Thus, this problem is a 
problem without replacement. That is, after a sprinter 
wins a medal he is not eligible for being selected again.

 
APPLY FORMULA 

For this type of problem the following formula should 
be applied: A = n!/(n-k)! with n being the number of 
all sprinters and k being the number of sprinters that 
have to be correctly guessed. 

 
INSERT VALUES 

In the given example there are 7 sprinters to choose 
from. This is the set of elements for selection (n = 7). 
As we want to find out the probability of correctly 
guessing the winner of the gold, the silver, and the 
bronze medals, 3 sprinters out of these 7 sprinters have 
to be selected. Therefore, the number of selected 
sprinters equals k = 3. Inserting these values into the 
formula for permutation without replacement yields 7! 
/ (7- 3)! = 210 possible permutations.

 
CALCULATE PROBABILITY 

In order to calculate the probability of correctly 
guessing the winner of each of the three medals, divide 
1 (the particular permutation we are interested in) by 
the number of possible permutations. Thus, the 
probability of getting this permutation (the winner of 
each of the three medals) equals 1/210.

FIND 1ST EVENT PROBABILITY 
In order to find the first event probability you have to 
consider the number of acceptable choices and the 
pool of possible choices. The number of acceptable 
choices is 1 because only 1 sprinter can win the gold 
medal. The pool of possible choices is 7 because 7 
sprinters participate in the 100m-sprint. Thus, the 
probability of correctly guessing the winner of the gold 
medal is 1/7. 

 
FIND 2ND EVENT PROBABILITY 

In order to find the second event probability you again 
have to consider the number of acceptable choices. 
The number of acceptable choices is still 1 because 
only 1 sprinter can win the silver medal. The pool of 
possible choices is reduced to 6 because only the 
remaining 6 sprinters participating in the 100m-sprint 
are eligible to receive the silver medal. Thus, the 
probability of correctly guessing the winner of the 
silver medal is 1/6. 

 
FIND 3RD EVENT PROBABILITY 

In order to find the third event probability you again 
have to consider the number of acceptable choices. 
The number of acceptable choices is still 1 because 
only 1 sprinter can win the bronze medal. The pool of 
possible choices is reduced to 5 because only the 
remaining 5 sprinters participating in the 100m-sprint 
are eligible to receive the bronze medal. Thus, the 
probability of correctly guessing the winner of the 
bronze medal is 1/5.  

 
CALCULATE THE OVERALL PROBABILITY 

The overall probability is calculated by multiplying all 
individual event probabilities. Thus, the overall 
probability of correctly guessing the winner of each of 
the three medals is 1/7 * 1/6 * 1/5 = 1/210. 

 
Note. In experimental conditions with highly-elaborated examples the solution procedure contained all 
information stated in the relevant table column. Conditions with low-elaborated examples contained only the 
mathematical information printed in bold. Conditions with medium-elaborated examples received a verbal 
description of the mathematical information but without further explanatory justifications.
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Table 2 

Results of Experiment 1: Means (and standard deviations) 

Solution approach Molar Modular 

Level of elaboration Low Medium High Low Medium High 

Pretest (% correct) 66.67 

(20.81) 

72.20 

(17.74) 

66.89 

(21.58) 

68.18 

(26.51) 

73.94 

(13.25) 

67.92 

(25.13) 

Learning time (min) 13.53 

(4.90) 

17.44 

(9.52) 

17.13 

5.66) 

7.24 

(3.40) 

7.10 

(3.40) 

9.93 

(4.05) 

Frequency of example retrieval 22.00 

(12.37) 

15.65 

(8.07) 

15.29 

(6.40) 

15.78 

(9.55) 

10.80 

(1.66) 

12.00 

(4.06) 

Problem-solving time (min) 33.04 

(13.17) 

35.71 

(14.91) 

36.60 

(9.88) 

33.88 

(8.06) 

28.40 

(6.51) 

33.04 

(14.74) 

Isomorphic problems (% correct) 44.44 

(37.09) 

43.14 

(36.83) 

33.33 

(26.15) 

64.81 

(35.19) 

66.67 

(33.33) 

64.71 

(34.30) 

Novel problems (% correct) 14.44 

(23.46) 

14.71 

(21.96) 

9.52 

(19.30) 

37.96 

(31.73) 

36.67 

(26.87) 

39.22 

(34.33) 
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Task demands 64.33 

(15.22) 

62.35 

(19.69) 

55.36 

(24.92) 

56.39 

(21.88) 

42.00 

(24.63) 

40.00 

(28.99) 

Effort 55.67 

(23.82) 

45.00 

(23.45) 

42.14 

(29.20) 

41.11 

(26.76) 

29.00 

(23.99) 

25.59 

(24.99) 

Navigation demands 26.67 

(23.20) 

21.18 

(24.40) 

20.71 

(23.85) 

11.39 

(9.97) 

15.00 

(16.48) 

12.65 

(15.12) 

Feeling of success 50.00 

(24.64) 

63.53 

(22.96) 

65.36 

(16.69) 

55.83 

(22.05) 

71.67 

(12.77) 

76.18 

(20.58) 

Stress 39.67 

(30.50) 

38.83 

(27.59) 

44.29 

(26.37) 

37.50 

(26.36) 

28.67 

26.96) 

30.00 

(30.57) 
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Table 3 

Results of Experiment 2: Means (and standard deviations) 

Solution approach Molar Modular 

Self-explanation prompts Without  With Without With 

Pretest (% correct) 71.90  

(19.22) 

67.59 

(19.92) 

73.16 

(14.79) 

67.27 

(17.61) 

Learning time (min) 9.50 

(5.64) 

19.13 

(6.31) 

4.63 

(2.31) 

12.23 

(5.10) 

Frequency of example retrieval 15.86 

(13.11) 

8.91 

(2.52) 

11.14 

(4.36) 

9.12 

(2.77) 

Problem-solving time (min) 25.57 

(7.73) 

30.28 

(10.03) 

20.33 

(5.16) 

23.55 

(5.71) 

Isomorphic problems (% correct) 45.45 

(41.84) 

47.83 

(38.70) 

79.37 

(28.82) 

62.67 

(32.38) 

Novel problems (% correct) 22.73 

(28.43) 

31.88 

(36.55) 

49.21 

(28.61) 

32.67 

(21.24) 
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Task demands 40.25 

(22.39) 

42.64 

(20.95) 

28.50 

(23.23) 

31.75 

(16.49) 

Effort 35.25 

(23.71) 

35.95 

(16.63) 

25.00 

(19.53) 

26.00 

(16.51) 

Navigation demands  13.25 

(20.66) 

15.00 

(17.32) 

7.50 

(10.07) 

12.75 

(9.52) 

Feeling of success 76.75 

(24.20) 

68.81 

(22.13) 

81.50 

(16.79) 

76.00 

(14.47) 

Stress 22.25 

(25.17) 

22.38 

(15.46) 

11.50 

(12.99) 

27.75 

(24.09) 
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Figure Captions 

Figure 1. Self-explanation prompts, feedback, and instructional explanations for molar examples 

(sample). 

Figure 2. Self-explanation prompts, feedback, and instructional explanations for modular 

examples (sample). 

Figure 3. Illustration of the prompting procedure. 
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Figure 1 
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Figure 1 (cont.) 
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Figure 2 
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Figure 2 (cont.) 
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Figure 3 

 

 
 

 

 

FIRST EXAMPLE OF  
PC HIGHLY-ELABORATED 

SECOND EXAMPLE OF PC  
MEDIUM-ELABORATED 

PROMPT FOR SELF-EXPLAINING  
SOLUTION STEP 

EVALUATION OF ANSWER &  
FEEDBACK (INSTRUCTIONAL EXPLANATION) 

AUGMENTATION OF EXAMPLE  
WITH INSTRUCTIONAL EXPLANATION 

SECOND EXAMPLE OF PC  
HIGHLY-ELABORATED 

if last solution step 

if solution steps left 


	Method
	Results and Discussion
	Method
	Results 
	General Discussion

