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This article describes a study into the role of heuristic support in facilitating discovery learning through 

simulation-based learning. The study compares the use of two such learning environments in the 

physics domain of collisions. In one learning environment (implicit heuristics) heuristics are only used 

to provide the learner with guidance derived from heuristics, without presenting the heuristics 

themselves, in the other (explicit heuristics) the heuristics themselves are also made explicit to the 

learner. The two learning environments are tested with 46 students from two schools. The results show 

that learners in both conditions gain domain knowledge from pre-test to post test. Regression analyses 

show that pre-test results can predict post-test results in the implicit heuristics condition but not in the 

explicit heuristic condition. Process analyses suggest that presenting the heuristics explicitly facilitate 

more self-regulation in students. 

Introduction 

Discovery learning has seen a resurgence in popularity over the last decade for at least 

two reasons. One reason is a tendency towards more learner-centered instead of 

teacher-centered education. The discovery learning of science, with its emphasis on 

developing a self-attained grasp of a phenomenon through active inquiry of that 

phenomenon (Zachos et al., 2000) fits rather well within a learner-centered approach. 

The other reason lies in the wide availability of computers that inspired people to 

develop powerful simulation-based learning environments for scientific discovery 

learning. 

http://www.informaworld.com/openurl?genre=article&issn=0950%2d0693&volume=28&issue=4&spage=341
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In the discovery learning of science with computer simulations, learners address 

given problems in a scientific way (de Jong & van Joolingen, 1998). A main 

advantage of simulations is that they provide a constrained environment (de Jong, 

1991). They are constrained because they are based on the experimental frame (van 

Joolingen & de Jong, 1991) that defines the simulation, that is, the set of variables that 

the user can manipulate and observe as determined by the designer of the simulation. 

Hence the simulation reflects the designer’s theoretical views on the domain. This 

characteristic distinguishes simulation-based scientific discovery learning from other 

forms of discovery learning, that often provide a less structured environment, as has 

often been criticized (Hodson, 1996, 1998; Mayer, 2004).  

These methods used by students include, for instance, choosing values for 

variables in experiments, plotting values of variables to interpret results, answering 

questions, formulating hypotheses, and many more (Friedler et al., 1990; Krajcik et 

al., 2000; Kuhn et al., 2000; Lewis, 1993; Njoo & de Jong, 1993; White, 1993). 

When learners possess the skills that are needed to carry out these methods, scientific 

discovery learning will be motivating (Minstrell, 2000), and lead to integrated 

knowledge about the domain (Schauble et al., 1991). However, when learners 

experience problems with these methods, which is often the case (de Jong & van 

Joolingen, 1998; Klahr & Dunbar, 1988; Kuhn et al., 1992; Quinn & Alessi, 1994; 

Reimann, 1991; Shute & Glaser, 1990), support should be provided.  

There are three main approaches to providing such support: one can try to teach 

scientific discovery skills, try to offer support during that process from within the 

learning environment, or try to offer support within the learning environment that 

allows learners to become competent at discovery learning. 
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Teaching general discovery learning skills before actually engaging in the activity 

has severe drawbacks. First of all, it has been claimed that there is not a single 

scientific method, but that there are methods dependent of the actual science domain 

in which discovery takes place (Hodson, 1998). Although it can be argued that 

scientific methods have common elements, there are reasons to assume that transfer 

from a general teaching scenario to a specific learning context may not take place. 

Built-in support tries to shield learners from potential problems that they might 

encounter during discovery learning, and has been tried out in many studies by 

offering cognitive tools to learners. Cognitive tools that scaffold learning processes 

take over part of the process, for instance, by externalizing learning processes, or 

structuring the task (Lajoie & Derry, 1993; van Joolingen, 1999). For example, a 

learning environment may contain dedicated notebooks that allow learners to take 

structured notes, tools to manipulate data, and/or forms with explicit steps to be taken 

by the learner (Shute & Glaser, 1990; van Joolingen & de Jong, 1997). If applied and 

implemented carefully, the learner will be guided through the environment, and will 

be able to acquire knowledge about the domain along the way. The third approach is a 

combination of the first two, where the function of guidance is to support the learner 

in the current situation, and to teach underlying discovery learning principles that 

transfer to new situations.  

A potentially fruitful way for implementing this approach is to use heuristics; rules 

of thumb that can help to reach a certain goal in a complex problem-solving situation 

(Polya, 1945, 1971; Schoenfeld, 1979, 1985). Heuristics have characteristics that 

make them suitable for both guidance, and transfer purposes. The latter requires the 

learner to acquire explicit knowledge of the heuristics, acquired through own 
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abstraction, or from a learning environment that presents the heuristics in an explicit 

way. 

Heuristics can provide a powerful means for making decisions in a discovery 

learning process. A typical discovery process does not allow a complete and 

exhaustive analysis of the problem and the context, and decisions need to be made 

based on incomplete information. Therefore, heuristics can play an important role in 

shaping a discovery process. Table 1 presents an overview of heuristics used in this 

study. The heuristics stem from an inventory by (Sanders et al., 2000).  

 ___________________ 

Insert Table 1 about here 

___________________ 

Most heuristics in Table 1 apply to the kind of inquiry that is typically found in 

simulation-based inquiry environments. They are specific enough to elicit concrete 

behavior and general enough to be of use in multiple simulations. A characteristic of 

heuristics is that they can be fallible, i.e., they might lead to wrong decisions. This can 

be illustrated with VOTAT (vary one thing at a time) a heuristic related to 

experimental design (Tsirgi, 1980). This heuristic (sometimes also referred as 

controlling variables) is generally considered to be important and has been the focus 

of studies (Chen & Klahr, 1999; Schauble et al., 1995) or given as hint to students 

before (Rivers & Vockell, 1987) or during experimentation (Lavoie & Good, 1988). 

The idea behind it is that by changing only one thing (in the case of simulations: a 

variable value) at a time, differences between the outcomes of the experiments can be 

attributed to the one thing that was changed. However, as Zohar (1995) argues, this 

principle  does not work in situations with interacting variables where it is necessary 
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to look at situations in which more than one variable is changed. Therefore, apart 

from the utility of heuristics, their limitations must also be taught. 

Heuristics can vary in the range of situations in which they can be applied, they can 

depend more or less on the domain and also be more or less general. Varying the use 

of heuristics in a learning environment along these dimensions can make learners 

aware of the heuristics’ potential use. This can increase the probability of transfer to 

occur, as both the heuristic itself as its domain of application can be observed by the 

learner. In instruction, heuristics can be made explicit to the learner or kept implicit. 

Embedding a heuristic implicitly in a learning environment by providing the learner 

with hints and guidance derived from a heuristic can be augmented by presenting the 

heuristic itself. Implicit heuristics in a learning environment may result in successful 

behavior within the learning environment, but it is unrealistic to expect transfer to 

other domains or situations.  

 

Aims  

The aim of the current study was to examine whether offering heuristics for discovery 

learning can engage learners in discovery learning processes in which they learn about 

the domain of head-on collisions and, through the heuristics, about the processes of 

discovery learning. The goal of the learning environment therefore was to learn 

science and to learn about science (Hodson, 1996). The domain of collisions was 

chosen because it can be described with a limited number of variables, which can be 

combined in formulas based on mass and velocity, but also in terms of general laws of 

energy and momentum that are not so easily discovered. The study also explores 

differential effects of implicit and explicit presentation of heuristics on knowledge and 

discovery behavior. 
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Design of the study 

Two learning environments were designed for the present study, one that incorporates 

heuristics only implicitly, and a second that incorporates heuristics both implicitly and 

explicitly. The two learning environments are built around the same simulations and 

contain the same set of cognitive tools to support the learners. The heuristics in Table 

1 are used in the design of these cognitive tools. In addition, the explicit version of the 

learning environment presents information about the heuristics to the learner. Both 

learning environments employ a fading approach in which the support from the 

heuristics is gradually decreased.  

Students are supported by cognitive tools in both conditions, therefore it is 

expected that students acquire knowledge about the domain in both conditions. 

Because students in the explicit condition need to process additional information 

about the heuristics, they are expected to need more time for the learning process at 

the start than students in the implicit condition. In line with Schoenfeld, 1985, who 

found that only explicit teaching of heuristics to students resulted in use of the 

heuristics later on, the difference between explicit and implicit is expected to result in 

differences in knowledge about and use of the heuristics. When the support is fading 

these differences are expected to show in the interaction with the environment. 

Students in the explicit condition are expected to be able to transfer heuristics, and 

keep on using them, whereas only part of the students in the implicit condition is 

expected to be able to do so. 

Method 

Participants 

Participants were 30 Dutch students from two schools: 17 students from one school, 

13 students from the other. The students took part in the study on a voluntary basis. 
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The students were in their fifth year of pre-scientific education (16-17 year-olds). All 

students attended physics classes and had sufficient computer experience. The 

students within a school class were distributed randomly over the two conditions. In 

the implicit condition one participant did not complete the knowledge pre-test. This 

participant is excluded from analyses where these test scores are needed. In the 

explicit condition one participant answered the post-test so quickly that it is most 

likely that the answers were randomly given. This participant is excluded from all 

analyses.  

The learning environment 

The learning environments in this study are adapted versions of the Collision 

environment (Swaak et al., 2004). The learning environment uses model progression, 

assignments, an experiment storage tool, background information, and feedback 

explanations to support learners. 

There are four model progression levels in the learning environment (White & 

Frederiksen, 1990). On the first level students can change the force exerted on a ball 

or the mass of the ball and investigate the relation between the force and the resulting 

velocity, and between the force and the resulting momentum (dt and applied force 

during dt were constant in this simulation). Students had prior knowledge about force, 

and this knowledge is used to introduce momentum, a key concept in collisions. The 

second level is about elastic collision of a ball against a fixed wall. The third level 

also deals with elastic collisions, but now 1-dimensional collisions between two balls. 

The final level is about 1-dimensional inelastic collisions.  

Each level includes a simulation. Figure 1 shows the simulation interface of the 

third level (elastic collisions). The simulation interface contains an animation of the 

movement of the ball(s). Diagrams plotting position and velocity of the ball(s) against 
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time are shown. The last three levels also show kinetic energy of the two colliding 

particles in a third graph. Under the animation and graphs, numerical values of 

variables are shown. Input variables are located towards the left side of the simulation 

window, output variables towards the right side. Students can increase or decrease the 

values of the input variables by clicking on the arrows next to the value, or by typing 

in a new value. The students can control the simulation with buttons on the bottom of 

the simulation window.  

___________________ 

Insert Figure 1 about here 

___________________ 

Each level contains assignments to support the students. The first level contains seven 

assignments, the second level five, the third level fourteen, and the fourth level 

thirteen. The first one or two assignments are an introduction to the level (e.g., 

introducing the relation between animation and the graphs). The introductory 

assignments are followed by assignments that ask learners to investigate relationships 

between input and output variables (e.g., relation between force and velocity for 

movement of a ball in Figure 2). The final assignment on a level concludes work at 

that level, or draws the attention to important issues related to that level (e.g., 

conservation of energy in the case of elastic collisions). Students are not forced to do 

assignments in the given order; they are free to choose any assignment at any moment 

in time. However, the names of the assignments, starting with a number, suggest a 

preferred order. 

___________________ 

Insert Figure 2 about here 

___________________ 
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A tool that allows learners to store the results of experiments accompanies all 

assignments that investigate relationships between input variables and output 

variables. This tool shows the input variables as well as the output variable(s) of 

interest for the current assignment. Apart from keeping track of experiments, the tool 

also allows students to draw graphs based on the experiments, fit functions through 

the experiments, and construct new variables.  

___________________ 

Insert Figure 3 about here 

___________________ 

Implementation 

The heuristics from Table 1 are included in the design and content of the learning 

environment. Figure 2 and Figure 3 show the differences between the instructional 

support measures included in both versions of the learning environment. The model 

progression levels for instance implement the ‘simplify the problem’ heuristic by 

dividing the domain into parts that can than be investigated by the learners. 

Assignments are offered to the learners on each model progression level, and within 

these assignments a number of heuristics are included. If possible the ‘simplify the 

problem’ heuristic is used at the start of a model progression level to create an 

assignment that is relatively easy to investigate. Later assignments use the ‘slightly 

modify hypothesis’ and ‘set expectations’ heuristic to address a broader range of 

situations and to see whether the findings from the simpler problem are valid in this 

broader range of situations. The ‘vary one thing at a time’ heuristic is included in the 

assignments by focusing on a relationship between one input and one output variable 

within an assignment, and by stressing that other variables should be kept the same 

over a series of experiments within such an assignment. A series of experiments is set 
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up in a way that it complies with the ‘simple values’, ‘equal increments’, and 

occasionally ‘extreme values’ heuristics. At the same time the ‘keep track’ heuristic is 

included by stressing the necessity to keep records of their experiments. The ‘draw 

graph’ and ‘confirm hypothesis’ heuristics are included in assignments, the 

experiment storage tool and their respective feedback. The ‘present evidence’ is 

included in feedback on incorrect answers. The feedback in the assignments also 

contains references to other heuristics if these can be related to the answer.  

The difference between the implicit and explicit heuristics condition is that in the 

implicit condition the student only receives guidelines derived from the heuristic. The 

students are told the steps that have to be taken in order to obtain enough information 

to reach a conclusion on the assignment goal. In the explicit condition these 

steps/guidelines are accompanied by the heuristic that they were derived from. For 

instance, use of the ‘simplify the problem’ heuristic may suggest setting the velocity 

of the second ball (v2) to zero. In the implicit condition the assignment just sets v2 to 

zero. This also happens in the explicit condition, but the student will also see the name 

of the heuristic and why the heuristic relates to setting v2 to zero in this case. Feedback 

on a learner’s behavior in an assignment is treated in a similar way: the implicit 

condition presents only feedback that could be derived from a heuristic, the explicit 

condition presents information about the heuristic itself as well.  In both learning 

environments heuristics are faded gradually, which means that in the beginning 

heuristics and concrete guidelines derived from the heuristics (explicit version) or 

concrete guidelines only (implicit condition) are presented to the learner and that 

these are replaced gradually by abstract guidelines (if possible) and until some 

eventually disappear. Guidelines for a heuristics like ‘equal increments’ start with 

explicit numbers (e.g. 10, 20, 30) on the first two levels, proceed with stepwise (e.g. 
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steps of 10) on level three, and are absent on level four. The heuristics (‘simple 

values’, ‘extreme values’, ‘make a graph’, and ‘keep track’ follow similar trajectories, 

others are faded more slowly.    

The experiment storage/graphing tool also has two versions. In the both conditions 

the tool can draw a graph and estimate a fit for functions. In the implicit condition the 

graph is accompanied by a short text that suggests that learner looks at both fit 

estimation and graph to see if the function fits through the experiments. In the explicit 

condition the graph also includes feedback on the heuristics, in Figure 3 it reminds the 

students, for instance, of the ‘change one variable at a time’ heuristic.  

 

Knowledge measures 

Three tests were administered to assess the students’ knowledge; a definitional 

domain knowledge test and an intuitive domain knowledge test to measure domain 

knowledge, and a scientific reasoning test to see whether heuristics transfer to general 

scientific reasoning and experiment design. The two domain knowledge tests were 

used because of previous experiences with differences in knowledge development 

between definitional and intuitive knowledge (Swaak & de Jong, 2001; Veermans et 

al., 2000). The tests for measuring definitional and intuitive knowledge are identical 

to the ones used in Swaak et al., 2004. The scientific reasoning test consists of a 

multiple choice part that will be referred to as the scientific reasoning test, and an 

experiment design question that will be referred to as the experiment design test.  

In the definitional knowledge test the students have to answer questions about the 

formal/static properties of the domain. The test consists of three-answer items in 

which students have to choose a correct formula, a general law, or the unit for a 
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certain quantity. The definitional knowledge test consists of 20 items, and students are 

allowed to return to previously answered items. 

The intuitive knowledge test intends to measure knowledge about the 

informal/dynamic properties of the domain (Swaak & de Jong, 2001). Each item 

contains three parts: start situation, event, and end situation. The start- and three 

possible end-situations are shown in graphs, and the event is described in text. 

Students have to decide which end situation is the result of the event. The intuitive 

knowledge test consists of 24 three-answer items, and students can not return to 

previously answered items. 

The scientific reasoning test contains translated questions from the ACT science 

tests (ACT, 2001). These questions focus on the design of experiments and the 

interpretation of experimental results. In addition, some questions regarding 

interpretation of information presented in tables, diagrams, and figures were included. 

Students receive fragments describing research and data carried out by others, and 

have to answer one or more multiple-choice questions about each fragment. Each of 

the fifteen questions has four answer alternatives. Figure 4 shows one of the data 

interpretation questions from this test. 

___________________ 

Insert Figure 4 about here 

___________________ 

 

Finally, students had to design an experimental research set-up. The topic is plant 

growth in a greenhouse, and the students are supposed to set up a research design to 

find out how amount of water, temperature and light influence plant growth in a 
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greenhouse. The number of variables is restricted to three to make it a non-trivial task 

that is at the same time not too time consuming. 

 

Students’ interactions with the learning environment were gathered in log files and 

used to extract information about the students’ interaction with the learning 

environment. The amount of time that students worked on each assignment, within 

each model progression level as well as the total time on task, were recorded. For each 

model progression level, the number of experiments, the number of unique 

experiments, and the number of graphs drawn, was extracted from the log files. For 

assignments it was checked whether students followed the experimentation guidelines 

and/or drew a graph and time spent and the number of experiments were also counted. 

These figures were aggregated for each model progression level to provide a global 

picture of the students’ interaction with the learning environment. 

 

Procedure 

The session lasted approximately three hours, and included the following sequence of 

events: 

• Introduction and pre-tests (40 minutes).  

Participants are welcomed and given an overview of the activities in the session. 

After this short introduction, the definitional knowledge and intuitive pre-test are 

administered electronically.  

• Interaction with Collision (set at 1 hour and 40 minutes).  

After the introduction, participants work with the Collision environment 

individually. Two experiment leaders are present and available for questions 

related to operating the environment, but not for questions concerning subject 
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matter. Participants are encouraged to use the full time available for the 

interaction. If they want to finish earlier they are asked to explore the environment 

more, but not forced to do so.  

• Post-tests (40 minutes).  

After the interaction with the learning environment the post-tests are administered. 

The definitional knowledge test is administered first, followed by the intuitive test, 

and the scientific reasoning test. The scientific reasoning test is a paper and pencil 

test. 

 

Results 

 

The Knowledge Measures 

The reliability of the definitional knowledge test was 0.39 on the pre-test and 0.63 on 

the post test. For the intuitive knowledge test, the reliability was 0.71 on the pre-test 

and 0.64 on the post test. The reliability of the scientific reasoning test was -0.64 as a 

result of a ceiling effect, small variance, and no systematic relation between score and 

incorrect answers. The experiment design question was rated on a five-point scale by 

two independent raters. They reached agreement on their ratings afterwards. Inter-

rater reliability between the raters was (k = 0.81) and between each rater and the final 

score (rater 1-final, k = 0.84, rater 2-final, k = 0.90).  

Table 2 presents an overview of the mean scores and standard deviations for the 

different knowledge tests. The definitional knowledge test and the intuitive 

knowledge test are assumed to measure different types of knowledge in students 

(Swaak & de Jong, 2001), with definitional knowledge being more static (knowing 

the underlying definitions and formula’s in a domain) and intuitive knowledge more 
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dynamic (knowing what will happen in a certain situation). The low correlation 

between the two pre-tests (implicit condition 0.11, explicit condition -0.03, both 

conditions 0.08), supports this assumption. 

___________________ 

Insert Table 2 about here 

___________________ 

It was expected that students in both conditions would gain on both types of 

knowledge, while working with the learning environment. Paired samples t-test 

comparison of the pre- and post-test results on the definitional knowledge test 

(overall: t(27) = 8.55, p <0.001, implicit: t(13) = 6.12, p <0.001, and explicit: t(13) = 

5.87, p <0.001), and the intuitive knowledge test (overall: t(28) = 7.50, p <0.001, 

implicit: t (14) = 6.04, p <0.001, and explicit: t(13) = 4.63, p <0.001), confirm this 

prediction. Effect sizes (d) for definitional and intuitive knowledge gain are large in 

both conditions with 1.46 (implicit) and 2.18 (explicit) for definitional knowledge, 

and 1.15 (implicit) to 1.40 (explicit) for intuitive knowledge. No differences are found 

between the two conditions on the definitional post-test (t(27)= -0.60, p=0.56), or 

between the two conditions on the intuitive post-test (t(27)= -0.37,  p=0.71). Students 

in both conditions scored high on the scientific reasoning test with no difference 

between the two conditions (t(27)= -0.43, p=0.67). The high scores, small variance, 

and reliability suggest a ceiling effect on this measurement. The experiment design 

question also did not show any differences (t(21.7)= -0.44,  p=0.66). Overall, the 

results suggest that the effect of the learning environment on knowledge is the same in 

the both conditions, however, based on experience from a previous study in which a 

more complicated picture arose from relations between the different test scores 

(Veermans et al., 2000), these relations are also examined.  
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Relations between pre- and post-test knowledge measures 

The relations between the pre-test and post-test scores provide information on the way 

the students respond to the learning environment. When all students respond to the 

learning environment in a similar way, the ranking of the students will remain more or 

less the same between pre- and posttest. In this situation a high rank correlation 

between (similar) pre- and post-tests would be expected.  

As can be seen in Table 3, in the implicit heuristics condition the rank-correlation 

between the definitional pre- and post-test (0.59), and between the intuitive pre- and 

post-test (0.57) suggest that the students respond to the treatment in more or less the 

way that might be expected. In the explicit condition this is not the case. In this 

condition the pre-test score is not related with its post-test counterpart on the 

definitional knowledge test, and only moderately with the intuitive knowledge test  

___________________ 

Insert Table 3 about here 

___________________ 

These results are examined in more detail with a regression analysis that uses the pre-

test scores to predict the post-test scores. This shows how well post-test scores can be 

predicted from pre-test scores and to what extent the different pre-tests contribute to 

the prediction. 

Table 4 shows the results of the regression analysis for the definitional knowledge 

test. It shows that, for the implicit condition, the definitional post-test result can be 

predicted based on the pre-test results. The regression function also shows that this 

prediction is mainly derived from the definitional knowledge, although the intuitive 

knowledge contributes to the prediction as well. In the explicit condition the 
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regression analysis is not significant, and what is also striking is that the definitional 

pre-test knowledge does not contribute to the prediction of the definitional post-test.  

___________________ 

Insert Table 4 about here 

___________________ 

Table 5 presents the results of the regression analysis for the intuitive knowledge test. 

Again, in the implicit condition the scores post-test can be predicted based on the pre-

test results. This time the prediction is almost solely derived from the intuitive pre-

test. Again, in the explicit condition the regression analysis is not significant. This 

means that, for both definitional and intuitive knowledge, students from the lower 

ranges on the pre-test are gaining more knowledge than students from the higher 

ranges. Of course they have more knowledge to gain (a student with 8 out of 20 has 

more to gain than a student with 12 out of 20), but lower scoring students are even 

passing higher scoring students in the explicit condition (e.g., the first student 

improving to 16 and the second to 15). 

__________________ 

Insert Table 5 about here 

___________________ 

 Process measures 

It was expected that students in the two conditions would differ in their interaction 

with the learning environments on the first level, when the students are confronted 

with the implicit and/or explicit heuristics for the first time. Table 6 shows indicators 

of student interaction with the learning environment on the first level. Contrary to the 

expectations, there is neither difference in time that students spent on the first level, 

nor in time spent working on assignments on this level. The difference in the number 
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of unique experiments with the simulation is not significant, and the total number of 

experiments is quite similar. Differences were found only in relation to following the 

guidelines in the assignments. Students in the implicit heuristics condition followed 

the experimentation heuristics in assignments 3 to 6 more often literally than students 

in the explicit heuristics condition did. They also drew graphs in more assignments 

than the students in the explicit heuristics condition. 

___________________ 

Insert Table 6 about here 

___________________ 

After the first two introductory assignments, the students were confronted with the 

heuristics for the first time in assignments 3 to 6. Each of these assignments asks the 

students to investigate a certain relation between two variables with a series of 

experiments and by drawing a graph. Table 7 shows the behavior of students on these 

assignments. Students were counted only if they conducted the exact same 

experiments in the same order as given in the assignment.  

___________________ 

Insert Table 7 about here 

___________________ 

What can be seen from these results is that almost all students in the implicit condition 

literally followed the experimentation guidelines in assignment 3 and 5. Only in 

assignment 4 about half of the students deviated from the heuristics in the assignment. 

The students in the explicit condition showed quite different behavior, with about half 

of the students following the heuristics literally in assignment 3 and 5, and almost no 

one in assignment 4. In assignments 3 to 5 students are also requested to draw a graph 

of the results of their experiments based on the “draw a graph” heuristic with the idea 
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that it makes the interpretation of the results easier. Although the pattern is not as 

strong, a similar pattern as for standard experimentation can be seen. Students in the 

implicit heuristics condition are drawing graphs more often than students in the 

explicit heuristics condition. These results suggest an effect on the way that students 

work depended on the learning environment condition (explicit or implicit), and that 

surprisingly enough this effect does not affect the time spent on the first level. The 

students in the explicit condition seem to more self-regulating, whereas the students in 

the implicit condition seem more regulated by the environment. The difference in 

behavior does however not propagate clearly to levels three (elastic collisions) and 

four (inelastic collisions)1. On these levels students can not be differentiated based on 

similar process measures.  

 

Relations between process and knowledge measures 

The previous section compared behavior of the students in the two conditions while 

working with the learning environment. The results show differences at the first level, 

which were not sustained at the next level. Does this mean that the differences only 

exist at the beginning and that students in both conditions work and learn in the same 

way on the other levels? In an attempt to answer this question, this section explores 

some of the relations between the process measures and the knowledge measures. The 

general idea is that, if students work and learn in similar fashion on these levels, 

correlations between process measures and the test results should also be comparable. 

Table 8 shows the correlations between definitional post-test score and process 

measures on levels three (elastic collisions) and four (inelastic collisions). 

                                                 
1 In the explicit condition of the first session students could not change the value of one of the variables 
on the second level as a result of a technical problem. As a result the second level was not fully 
comparable in both sessions. The results will therefore only be shown for levels three and four. 
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___________________ 

Insert Table 8 about here 

___________________ 

The results in Table 8 show a number of differences between the two conditions. Most 

striking are the differences with respect to experimenting within assignments. In the 

implicit condition the correlation between both total number and unique number of 

experiments within assignments and definitional post-test score is negative. In the 

explicit condition it is positive. The correlation between the number of assignments in 

which students draw a graph and the definitional post-test score is also positive in the 

explicit condition. Total experiments and total unique experiments have less strongly 

correlated with definitional post-test score. In general, correlations between process 

measures and definitional post-test score tend to be negative in the implicit condition, 

and positive in the explicit condition. For the intuitive knowledge post-test scores, this 

relation is not found.  

Conclusion 

The aim of this study was to examine whether heuristics for scientific discovery 

learning can engage learners in a learning process in which they learn domain 

knowledge as well as knowledge about the process of scientific discovery. Offering 

heuristics explicitly was investigated as a means for the acquisition of knowledge 

about scientific discovery. It is important that learners acquire domain knowledge in 

the same context as acquiring knowledge about scientific discovery, because learning 

about a domain provides the meaningful context in which application of the heuristics 

can prove to be valuable. Our results show a considerable gain, with large effect sizes, 

on both definitional and intuitive knowledge from pre- to post-test for the students in 
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both conditions. However, it is less easy to establish the relation between these gains 

and the learners’ actual behavior in the learning environment.  

We expected that learners receiving explicit heuristics would need more time to 

process the information offered, especially at the start of the learning experience. The 

analysis of the behavior of the students shows that there are some differences in 

behavior at the start, but not the expected difference in time. Students in the implicit 

condition carefully follow the implicit heuristics at the start. Students in the explicit 

condition more often deviate from the implicit heuristics and follow their own plans. 

They make own decisions about experimenting (more, less, different), and the need to 

draw a graph. Later on, these differences seem to disappear, meaning that the students 

in the implicit condition start working according to their own plans as well. Fading the 

support more or less forces them into a way of working comparable to the students in 

the explicit condition. However, this is not supported by relations between process 

measures and the post-test scores. The general tendency seems to be that in the 

explicit condition students who still show orderly discovery behavior on the third and 

fourth level, by experimenting, and drawing graphs of their experiments, score high 

on the definitional knowledge post-test. The implicit condition shows a relation in the 

other direction; here the more active students score low on the definitional knowledge 

post-test. This could indicate that at least some students in the implicit condition do 

not really know how to deal with the implicit heuristics. They learn to apply them, 

without really grasping the ideas behind them. It seems that only part of the students 

can cope with the fading support in the implicit condition, and that those who can are 

not the ones trying to use heuristics. 

 Analyses of the relation between pre-test and post-test scores also show differences 

between the two conditions with respect to how students respond to the learning 
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environments. The most striking difference is the strong relation between the 

definitional pre-test score and the definitional post-test score in the implicit condition 

and the absence of such a relation in the explicit condition. The regression analysis 

that predicts the post-test score based on the pre-test score shows that the prediction is 

much better for both types of knowledge in the implicit condition. It shows that in the 

explicit condition, students who score lowest on the pre-test are not necessarily 

scoring lowest on the post-test, and students who score highest on the pre-test are not 

necessarily scoring highest on the post-test. This means that if the definitional 

knowledge is taken as the discriminator between strong and weak students, the 

explicit condition changes this ranking from pre- to post-test more than the implicit 

condition thus favoring at least part of the weaker students. This could suggest that 

offering explicit heuristics may be especially beneficial for the weaker students. For 

science education this provides a case for explicit teaching of the way scientists work, 

not only at the abstract method level, involving hypothesis generation and testing, but 

at more practical level, involving the actual domain specific and general heuristics 

that scientists use in their daily work. Although our study did not provide firm results 

for all learners, the relations found between process and product provide some initial 

support to the hypothesis that students with low initial domain knowledge profit from 

such an approach. 

In general it can be concluded that the learning environments used in this 

study both succeeded in supporting the acquisition of domain knowledge while 

maintaining the students’ active engagement with the learning environment. Using 

implicit/explicit heuristics in the design of a learning environment seems to be an 

approach that deserves further investigation, especially with respect to the influence 

of offering explicit heuristics on students’ self regulation and to the parallel 
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development of domain knowledge and knowledge about science. There is some 

evidence indicating that the explicit heuristics triggered more self-regulation in 

students. This could mean that students incorporated the heuristics in their existing 

knowledge structures. Whether this is really the case could be investigated in a study 

in which, heuristic knowledge is explicitly measured and students are also exposed to 

discovery learning transfer task without support after their initial learning experience. 
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Figure 1. Elastic collision simulation window.
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Figure 2. Example of an assignment in two versions. On the left the version that was 

used within the learning environment with explicit heuristics, on the right, the same 

assignment in the version for the implicit heuristics environment. 
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Figure 3. Example of a graph with feedback given to the students. The top version of 

the feedback is given to the explicit heuristic condition, the bottom version to the 

implicit heuristic condition.
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Figure 4. Example question from the scientific reasoning test. 
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Table 1  

Heuristics used in the design of the learning environment 
Simplify problem Simplify the problem, or try to solve part of the problem (Polya, 1945; 

Schoenfeld, 1985) 

Identify 

Hypothesis 

Generate a small amount of data and examine for a candidate rule or relation. 

(Glaser et al., 1992) 

Slightly modify 

Hypothesis 

Address slightly modified problems: Weaken or strengthen conditions slightly in 

reformulating hypotheses (Glaser et al., 1992) 

Set expectations Expectations for a class are used, as expectations for members of the class not 

previously tested or if a law in one context is found, expect a similar form of law 

to hold in a new context.  (Kulkarni & Simon, 1988; Langley, 1981) 

VOTAT If a variable is not relevant for the hypothesis under, test then hold that variable 

constant, or vary one thing at a time (VOTAT), or If not varying a variable, then 

pick the same value as used in the previous experiment (Glaser et al., 1992; 

Klahr & Dunbar, 1988; Schunn & Anderson, 1999; Tsirgi, 1980)  

Simple values Design experiments giving characteristic results. (Klahr et al., 1993) 

Choose special cases, set any parameter to 1,2,3 (Schoenfeld, 1979) 

Equal increments If choosing a third value for a variable, then choose an equal increment as 

between first and second values. 

Or if manipulating a variable, then choose simple, canonical manipulations 

(Schunn & Anderson, 1999) 

Confirm 

Hypothesis 

Generate several additional cases in an attempt to either confirm or disconfirm 

the hypothesized relation (Glaser et al., 1992) 

Extreme values Try some extreme values to see if there are limits on the proposed relationship 

(Schunn & Anderson, 1999) 

Make a graph If you have a number of data points with values for variables, then make a graph 

to get an indication about the nature of the relationship. (Polya, 1945) 

Present evidence If you state a conclusion about a certain hypothesis present evidence to support 

that conclusion (Schoenfeld, 1985) 

Keep track Keep records of what you are doing. (Klahr & Dunbar, 1988; Kulkarni & Simon, 

1988; Schauble et al., 1991) 
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Table 2  

Mean scores and standard deviations (between brackets) for the different knowledge 

 Explicit Implicit Total 

 Pre Post Pre Post Pre Post 

Definitional  

(max = 20) 

10.9  

(2.1) 

15.6  

(2.4) 

10.6  

(3.1) 

15.2 

(2.8) 

10.8 

(2.6) 

15.4 

(2.6) 

Intuitive 

 (max = 24) 

16.9  

(3.8) 

21.1  

(1.9) 

16.8 

(3.9) 

20.7  

(2.9) 

16.9  

(3.8) 

20.9  

(2.4) 

Scientific reasoning test  

(max = 15) 

 12.6 

(1.1) 

 12.4 

(1.1) 

 12.5 

(1.1) 

Experiment design  

 (max = 5) 

 3.1 

(1.5) 

 3.0 

(1.0) 

 3.0 

(1.2) 
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Table 3 

Correlations between the pre-test scores and the post-test scores on the knowledge 

tests 

  Definitinal  

post-test 

Intuitive  

Post-test 

Scientific 

reasoning test 

Experiment 

design 

Explicit -0.11  0.40 0.50 0.09 Definitional 

pre-test Implicit 0.59*  0.17 -0.10 0.09 

Explicit 0.44  0.45 0.61* 0.26 Intuitive  

pre-test Implicit 0.52*  0.57* -0.13 0.43 

Note. All correlations are Spearman correlations; * means p<0.05, ** means p<0.01. 
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Table 4 

Regression analyses predicting definitional post-test scores based on pre-test scores 

on the knowledge tests 

 Explicit Implicit 

Definitional 

test 

Sum 

Square Df 

Mean 

Square F Sig. 

Sum 

Square Df 

Mean 

Square F Sig. 

Regression 19.7 2 9.87 1.92 0.193 50.4 2 25.2 4.74 0.033 

Residual 56.6 11 5.15   58.5 11 5.31   

Total 76.4 13    109 13    

Note. The regression functions for predicting the post-test score are: 

Explicit: definitional post = 9.63 + 0.06 * definitional pre-test + 0.33 * intuitive pre-test.   

Implicit: definitional post = 5.67 + 0.52 * definitional pre-test + 0.23 * intuitive pre-test. 

  



                                 HEURISTICS TO FACILITATE DISCOVERY LEARNING
   

36

Table 5  

Regression analyses predicting intuitive post-test scores based on pre-test scores on 

the knowledge tests 

 

 Explicit Implicit 

Intuitive test 

Sum 

Square Df 

Mean 

Square F Sig. 

Sum 

Square Df 

Mean 

Square F Sig. 

Regression 14.6 2 7.28 2.64 0.116 70.8 2 35.4 9.61 0.004 

Residual 30.4 11 2.76   40.5 11 3.68   

Total 44.9 13    111 13    

Note. The regression functions for predicting the post-test score are:  

Explicit: intuitive post = 13.97 + 0.30 * definitional pre-test + 0.23 * intuitive pre-test. 

Implicit: intuitive post = 10.32 + 0.06 * definitional pre-test + 0.57 * intuitive pre-test. 
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Table 6 

Process data from the first level (force ,mass, velocity). Means, standard deviations 

and t-Test comparison 

 Implicit Explicit T-test 

 Mean SD Mean SD T df p 

Total time (s) 2289 (373) 2292 (558) -0.02 27 0.987 

Time on assignments (s) 1552 (300) 1521 (443)  0.22 27 0.827 

Total experiments 29.7 (10.2) 32.4 (9.6)  0.75 27 0.459 

Total unique experiments 12.4 (4.79) 16.3 (6.83) -1.78 27 0.086 

Exact experimentation (max = 4) 3.27 (0.96) 1.79 (1.37)  3.35 23.2 0.003** 

Assignments with graphs 3.13 (0.64) 2.36 (1.22)  2.13 19.4 0.046* 

Note. * means p<0.05, ** means p<0.01. 
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Table 7 

Number of students that follow the heuristics in the assignments on the first level 

exactly  

Explicit (n = 13) Implicit (n = 15) 

Assignment Experimentation Graph Experimentation Graph 

A 3 tangent x(t)-velocity 7 10 13 12 

A 4 mass-velocity 3 11 8 15 

A 5 force-velocity 6 11 14 15 

A 6 formula velocity 10 n.a. 14 n.a. 
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Table 8  

Correlations between the definitional post-test score and process measures for elastic 

and inelastic collisions 

  Number of 

experiments 

assignments  

Unique 

experiments 

assignments 

Drawing of 

graph(s)  in 

assignments  

Total 

experiments 

Unique 

experiments 

Explicit 0.57* 0.28 0.50 0.17 0.45 Elastic 

collisions Implicit -0.64** -0.52* 0.09 -0.15 -0.28 

Explicit 0.41 0.41 0.62* 0.49 0.04 Inelastic 

collisions Implicit -0.43 -0.65** -0.10 -0.32 -0.58* 

Note. All correlations are Spearman correlations; * means p<0.05, ** means p<0.01. 
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