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Four Easy Pieces: Development Systems for Knowledge-Based
Generative Instruction

Patricia Y. Hsieh, Henry M. Halff, Carol L. Redfield, Training Technology Division, Mei
Technology Corporation, 8930 Fourwinds Dr., Suite 450, San Antonio, TX  78239

Abstract. The Experimental Advanced Design Advisor (XAIDA) is a system for the
development of computer-based maintenance training. XAIDA acquires knowledge of a device
from a subject matter expert and applies common maintenance-training procedures to generate
interactive training from the description. XAIDA provides maintenance training in four areas:
the physical characteristics of a device, its theory of operation, operating and maintenance
procedures, and troubleshooting. XAIDA relies on an instructional device known as a
transaction shell, an instructional procedure applicable to particular instructional objectives of a
specific type. XAIDA employs a different transaction shell for each of the four above-
mentioned areas, and each shell employs a knowledge structure appropriate to the shell.
Semantic networks represent physical characteristics and procedures; causal reasoning schemes
represent theory of operation; and fault trees represent troubleshooting. Each shell provides a
browser that is used to present knowledge to the student and a practice environment that
promotes skill acquisition under the guidance of an intelligent tutoring system. Subject-matter
experts create device descriptions using a WYSIWYG knowledge acquisition system that
makes for extremely efficient development. This paper describes each shell in detail,
summarizes the research that has been done, and describes where XAIDA stands in relation to
other knowledge-based authoring tools.

RAPID DEVELOPMENT SYSTEMS FOR KNOWLEDGE-BASED GENERATIVE
INSTRUCTION

This paper describes a research and development effort aimed at making it easy for subject-
matter experts to develop Interactive Courseware (ICW). By “easy” we mean that courseware
development should be as effortless as, say, spreadsheet development. We aim for development
efficiency on the order of ten hours of development for each hour of instruction. Our ideal
subject-matter expert is a maintenance technician with basic computer skills and no experience
in ICW development. The ICW that we seek to produce draws on the best techniques available
in the field, including conventional computer-based instruction, multimedia, exploratory
environments, and intelligent tutoring systems. It adds to existing instructional media the same
value that a knowledgeable instructor brings to instruction.

Our approach is grounded in knowledge-based, generative instructional methods, and, in
particular, Merrill’s (1993) notions of instructional transactions and transaction shells. A
transaction is an instructional procedure for meeting a particular instructional objective such as
being able to tie one’s shoe or answer questions about the characteristics of an automobile
engine. A transaction shell is a generic form of a transaction. It might, for example, describe a
procedure for instruction in step-by-step procedures in general  or for associative learning in
general. Transactions are produced by adding particular subject matter knowledge (e.g., the
steps in tying one’s shoe or the characteristics of an automobile engine) to a transaction shell.

Transaction shell theory is therefore founded on the hypothesis that one can factor subject-
matter knowledge and instructional procedures. We do not claim that the hypothesis is original
with Merrill. However, his ideas were the immediate inspiration for XAIDA. Some sense of the
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history of the project can be obtained from Hickey, Spector and Muraida (1991), Spector
(1990), and Spector, Polson and Muraida (1993).

Although the factorability hypothesis would be difficult to defend in general, it should
hold within limited content domains (Halff, 1993). The domain of interest to us is equipment
maintenance. Building on a conceptual design for maintenance training in Halff (1990a), we are
developing four computer-based transaction shells, each of which addresses a particular aspect
of maintenance training. These aspects include a system’s physical characteristics, its theory of
operation, its operating and maintenance procedures, and troubleshooting procedures. The four
shells and their associated software comprise a system called (for historical reasons only) the
Experimental Advanced Instructional Design Advisor (XAIDA). The view of XAIDA as
applicable to maintenance training only should not be taken too seriously. It has found
application in the closely related field of medicine, and, like any good computer tool, has found
application in many areas for which it was never intended.

Our purpose in presenting this work is twofold. First, we hope to provide evidence
concerning transaction theory’s central hypothesis (the factoring of knowledge and
instructional methods) and thereby advance instructional theory in general. Second, we hope to
raise some of the more important issues that arise in practical implementations of knowledge-
based generative instruction and to contribute to their resolutions.

The Structure of XAIDA (and of This Paper)

XAIDA consists of two computer programs and a corpus of associated data. A program called
Develop is a knowledge acquisition system used by a subject-matter expert to specify the
knowledge and materials making up the subject matter of instruction. The output of Develop is
an XAIDA Knowledge Base. This Knowledge Base specifies the structure of knowledge in the
domain and the materials used in interactions with students. Deliver is an instructional delivery
program that uses transaction shells to mediate the interaction between a student and the
Knowledge Base. Describing XAIDA’s approach to instruction is therefore a matter of
addressing four topics: (a) the representation of subject-matter knowledge, (b) the instructional
materials associated with knowledge structures, (c) the instructional procedures embodied in
Deliver, and (d) the knowledge acquisition procedures embodied in Develop.

These topics are handled differently by each of XAIDA’s four transaction shells. The
representation of a system’s physical characteristics, for example, is quite different than that of
its theory of operation. Hence, what students need to learn about these two aspects of a system
is different. The instructional techniques and materials differ as well. Table 1 provides a sense
of the main characteristics of each shell, in a way that illustrates their differences. In spite of
these differences, each of the shells brings two basic modules or capabilities to the task of
instruction: a browser that is used to present knowledge to the student and a practice
environment that promotes skill acquisition under the direction of an intelligent tutoring
system.

We need to mention that XAIDA is a work in progress, and each shell is at a different
stage of development. The Physical Characteristics shell is the most developed. It is both usable
and effective in properly supported applications. The Theory of Operation shell is likewise
fully functional. It has not had the benefits of extensive testing and refinement that have
accrued to the Physical Characteristics shell. The Procedures and Troubleshooting shells exist
only as functional specifications and working Deliver prototypes.

The body of this paper describes each shell in terms of topics a–d listed above. Our main
focus is on knowledge representation and instructional methods. Within the latter, we focus on
intelligent tutoring techniques. The focus on intelligent tutoring is partly in order to address the
purpose of this special issue of the IJAIED but also because intelligent tutoring techniques
inevitably stress the transaction-shell approach in deeper and more interesting ways that other
less interactive instructional methods.
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The paper concludes with a brief summary of XAIDA research, a description of where
XAIDA stands in relation to other ITS authoring tools, and directions for future research and
development.

Table 1. XAIDA’s Transaction Shells

Transaction
Shell

Nature of
Knowledge

Instructional
Objective

Knowledge
Representation

Instructional
Method

Physical
Characteristics

The structure of
the system, the
location and other
characteristics of
the system, its
modules, and its
components

Recall of system
characteristics in a
variety of
situations

Semantic network
based on the
structure of the
system

Structure-directed
presentation of
system
characteristics and
practice in recall
using diverse
exercise formats.

Theory of
Operation

Variables
characterizing
system behavior,
their possible
values and their
functional
relations

Infer the values of
some variables
from knowledge
of the values of
others

Causal reasoning
scheme

Presentation of
salient cases (both
student- and
instructor-
generated) about
system behavior
along with
exercises
requiring
inferences about
system behavior.

Procedures The steps of a
procedure,
characteristics of
the procedure and
of each step
including
potential mistakes
and mishaps.

Recall the steps of
a procedure; the
fundamental
characteristics of
the procedure and
of each steps,
including
potential mistakes
and mishaps.
Recall methods
for error
avoidance and
recovery.

Semantic network
based on the steps
of the procedure.

Stepwise
presentation of the
procedure;
stepwise practice
of recall; practice
in error
recognition and
recovery; global
recall practice.

Troubleshooting Successive
partitions of the
system used to
progressively
isolate a fault,
observations used
in the isolation
process

Isolate a fault by
narrowing its
locus to
successive
subregions of the
system.

Discrimination net
(called a fault
tree) with regions
at its nodes and
observation at its
branches.

Troubleshooting
practice in which
faults are
progressively
added to the
practice
environment in
the order dictated
by the fault tree.

PHYSICAL CHARACTERISTICS

Maintenance training typically provides for extensive treatment of the physical characteristics
of the systems addressed in the training. Students must learn the structure of the system, that is
its modules and components. They must learn where these parts are located. They must master
their salient characteristics such as their functions, capacities, and limitations. In conventional
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instruction students must exhibit mastery of these facts by passing tests consisting of questions
about the system.

XAIDA’s Physical Characteristics shell is designed to instill this knowledge in students.
The type of knowledge is fundamentally associative, and we therefore use semantic networks
for knowledge representation. Instructional capabilities include both a browser used to present
instructional materials and an intelligent tutoring system (ITS) that can be used to practice
recall of the characteristics.

Knowledge Representation: Semantic Networks

XAIDA uses semantic networks to represent the physical characteristics of a device. In this
respect XAIDA follows a tradition that dates back to the dawn of intelligent tutoring systems
(Carbonell, 1970). A semantic network (Collins & Quillian, 1969; Collins & Loftus, 1975) is a
set of triples, called facts in XAIDA, of the form (subject, attribute, object), for example, (filter
basket, part of, coffee pot). Figure 1 depicts a fragment of a Physical Characteristics semantic
network. Several points about this network are worth mention:

1. Central to XAIDA’s knowledge representation for Physical Characteristics is the part
structure of the device being represented. This structure is represented in the semantic
network through the attribute “is part of”. We use the term “part” to refer to any element of
the part structure, including the top-level element. We reserve the terms “system” or
“device” to refer to this top part.
2. In a Physical Characteristics semantic network the subject of a fact  is always a part.
3. The network contains location information. Associated with each part is a background
graphic in which all of its subparts are visible. Associated with each subpart is a region of
the background called a locator that denotes the location of the subpart. Such a locator is
shown in Figure 1 for the Crew Drain Valve.
4. The developer can create any number of attributes deemed important for device
understanding and create facts for those attributes. The objects in these facts can either be
other parts (e.g., (Crew Drain Valve, connected, Buildup and Vent Valve) as shown in
Figure 1) or text (e.g., (Troop Oxygen System, function, provide oxygen to troops) as
shown in Figure 1).

Figure 1. Physical Characteristics Semantic Network Fragment.
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Instructional Materials

As  mentioned above, the elements of the knowledge representation described here each have
associated instructional resources that are used to convey information about the element to the
student. These materials can take on several forms.

Materials for parts. Each part has a name, a text string that both XAIDA and the student
use to refer to the element named. Each part has a description, a short body of text describing
the part. Each part has a bitmapped graphic called a background, a picture of the device that
shows each of its subparts. The term “background” was chosen because it is usually presented
with an overlay of locators that show the locations of subparts.

A variety of instructional resources can be associated with each part. These resources can
be as simple as a bit of text or as complex as an HTML file linking the lesson to the World
Wide Web. Any computer file with an associated executable (player) can be designated as a
resource, and any number of resources can be associated with a part.

Materials for facts. XAIDA also generates instructional materials from facts. Each
component of a fact (part, attribute, and value) has a name. These names fill slots in templates
to create sentences of various types pertaining to the fact. One template states the fact in a
simple declarative form. Other templates put the fact in question form for practice purposes and
in forms suitable for feedback during practice. Any of these templates can be customized on an
attribute-by-attribute basis.

Instructional  Delivery

In providing instruction on a device’s physical characteristics, XAIDA constructs a lesson
outline based on the part structure of the device (see Figure 1) and covers each part in outline
order. A browser is used to present the materials related to each part in outline order. In
addition, a practice session is inserted after all parts of any part with subparts have been
covered. Thus, the first few topics covered in connection with Figure 1 are

C-141 Oxygen System,
Crew Oxygen System,

Crew Converter Palette,
Buildup and Vent Valve,
Crew Drain Valve,

Practice,
remaining parts of the Crew Oxygen System,

… .

The following sections describe the operation of the browser and practice capability.

The Physical Characteristics Browser

The Physical Characteristics Browser has three functions. It presents an overview of a part; it
provides systematic step-by-step coverage of the part’s characteristics; and it supports selective
review of material previously presented.

Overview. Each part is introduced to the student with a one- or two-part overview.  First,
the part is shown in the context of its parent part by highlighting the part’s locator in its
parent’s portrayal.  This step is omitted in the case of the system itself, which has no parent.
Second, the part is shown close up, along with its description (Figure 2).  If the part has sub-
parts, the locations of the sub-parts will also be indicated using labeled locators; furthermore, if
the student happens to pass the cursor over one of these locators, a text description of the
corresponding sub-part is presented.

Presentation. The second step of the overview (Figure 2) introduces the presentation of the
part’s characteristics, namely, its resources, facts, and subparts. During the presentation of a
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part, XAIDA presents the resources and facts associated with the part. The browser is then
invoked recursively on each of the part’s subparts.

Review. The student can normally only view new material in a lock-step fashion, using the
Next button, but may review previously presented material in any order. Parts can be reviewed
by selecting either their locators or their entries in the Outline pane. The materials for an
individual part can be reviewed by selecting entries in the Contents pane.

Figure 2. Physical Characteristics Browser

Practice

The student is given practice on fact recall after coverage of all of the subparts of any part with
subparts. The scope of the practice includes all the facts for all previously presented parts.
XAIDA’s practice capability is an Intelligent Tutoring System (ITS) that helps students learn
the facts about a device under study and its parts. This ITS consists of four, now classic,
components: an expert module, a student model, an instructional module, and a student
interface (Polson & Richardson, 1988; Wenger, 1987). They are described as follows:

The expert module. The expert module of the ITS consists of the semantic network of facts
that have been presented to the student. The structure of this network is described above in
connection with the knowledge representation for physical characteristics.

The student model. The student model has two parts: a marking of the semantic network
that indicates the state of mastery of each fact, and a list of misconceptions: “facts” not in the
semantic network that the student has exhibited in her performance.  The student model is
updated whenever the student answers a question generated by the instructional module. Each
question can address any number of facts, and the student’s answer can exhibit mastery of a
fact (correct) or failure of mastery (error). Facts are either mastered or unmastered. A fact is
deemed to have been mastered if the student generates two (or some other criterial number of)
correct responses with no intervening errors. Conversely, two errors in a row puts the fact back
in the unmastered state.  In addition, a student’s answer can exhibit a misconception. A
misconception is recorded when a student answers a question about an attribute with a part and
a value that are not so related in the expert model.  For example, if the student responds that the
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capacity of the crew oxygen system is 15 liters, when it is actually 25 liters, the misconception
(crew oxygen system, capacity, 15 liters) is formed. Misconceptions are removed from the
model whenever the student passes up an opportunity to exhibit the misconception.  For
example, the misconception (crew oxygen system, capacity, 15 liters) is removed if the student
correctly states that it has a capacity of 25 liters, or even if the student incorrectly states that it
has a capacity of 30 liters.  In the latter case, the misconception (crew oxygen system, capacity,
15 liters) would be removed, but a new misconception (crew oxygen system, capacity, 30 liters)
would be added.

The instructional module. The instructional module repeatedly generates questions about
facts. It then allows the student to answer each question, and provides feedback on the
responses.

Each question is formed by configuring one of 11 exercise schemata. One of these
schemata in action is illustrated in Figure 3. Most schemata, like the one in Figure 3, address
more than one fact, and it is even possible for an exercise not to address the target fact used in
the exercise’s generation.

Figure 3. Physical Characteristics Exercise

Some schemata ask questions about parts and attributes (e.g., Enter the function(s) of the
Pressure Gauge). Schemata such as these are configured with a particular part-attribute
combination. Other schemata ask questions about attributes and values (e.g., Enter the part(s)
with a function of indicates pressure). Schemata such as these are configured with a particular
attribute-value combination.

Question generation is a two step process. First, a part-attribute pair or an attribute-value
pair is randomly chosen with a bias towards pairs that address a large number of unknown facts
or misconceptions. Second, a schema is randomly chosen from among those that fit the selected
pair. The pair selected for the exercise in Figure 3, for example was (function, store hydraulic
fluid for the system). This pair was a likely choice to the extent that the student knew none of
the parts that store hydraulic fluid and to the extent that he had misconceptions about parts that
store hydraulic fluid. The schema, “Select part(s) with a(n) attribute of value,” was chosen
because it is configured with an attribute-value configuration. Another, equally likely choice
was “Enter part(s) with an attribute of value.”
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Feedback is quite detailed. First, each of the student’s responses is reviewed. The student
is told whether or not the response is correct. In the case of incorrect answers, the student is
given related information about the response (see Figure 3). After reviewing the student’s
responses, XAIDA shows any correct answers that she may have failed to provide.
The student interface. The student interface is one that supports practice and lookup of question
answers. Students are able to search the course materials using the browser and return to the
question when they have found an answer. Available to students having difficulty is a “Tell
One” button that supplies a single, randomly chosen, correct answer to the question or, if there
are no more answers, so informs the student. Also available is the option to move on to another
question without answering the one presented.

Any of three conditions serve to terminate a practice session: when a fixed percentage of
the facts have been mastered, when a fixed amount of time has elapsed, or when a fixed number
of questions have been asked.

Instructional Development

Instructional Development in XAIDA is supported by a program called Develop. Although
Develop and Deliver are distinct programs, the former's WYSIWYG approach (described
below) is one that gives the developer a good feel for the instruction offered by her lesson. In
fact, through features such as selective preview (also described below) Develop offers a better
view of the lesson than that afforded by running it with Deliver.

XAIDA takes a What-You-See-Is-What-You-Get (WYSIWYG) approach to knowledge
acquisition. That is, the developer works mainly by editing the same displays that are used by
Deliver during instruction. This approach obviates the need for separate preview capabilities
and for extensive off-line planning of lesson structure. Developers always have before them the
instruction that will be delivered to students, and the development process, by and large,
follows the same course as does instruction.

The main difference between Develop and Deliver are the needs, in the former, to be able
to edit or add to a knowledge base, to designate instructional materials (names, descriptions,
resources, etc.), and to selectively preview instruction. These functions are accommodated in
XAIDA by menu selections or selections from a tool palette.

Develop is not completely WYSIWYG in that forms are provided for a few authoring
functions. Forms are provided for editing facts, templates, instructional parameters, and other
data of this sort. Facts, for example, are constructed and edited using a special purpose fact
editor. The fact editor allows the developer to construct pools of attributes and values and to
assemble facts from these pools.

Develop also allows developers to selectively preview and revise the declarative and
question templates for a given attribute. The need for selective preview arises from the
generative nature of XAIDA'a approach, particularly in the practice module. Although a
developer can get a good sense of the overall operation of the practice module simply by
running her lesson in Deliver, she cannot use Deliver to examine the operation of particular
exercise types with particular facts. Thus Develop offers the capability to view the operation of
the practice module on a fact and an exercise type of the developer's choosing. The developer
may also specify which question schemata apply to each attribute and modify the templates
used to express facts.

When we field tested lessons with parts having more than one fact per attribute, some
users complained that XAIDA's tendency to present each fact as a separate statement was
awkward and repetitive.  For example, when presenting the facts (Crew Drain Valve,
connected, Buildup and Vent Valve) and (Crew Drain Valve, connected, Crew Converter),
XAIDA will use two separate statements, e.g.,

The Crew Drain Valve is connected to the Buildup and Vent Valve.
The Crew Drain Valve is connected to the Crew Converter.
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We therefore gave developers the option to suppress the presentation of facts for a given
attribute.  Facts for an invisible attribute are available for practice questioning, but are not
presented in the browser.  Developers can, and as a rule should, then present that factual
information in a more aesthetically pleasing manner elsewhere in the lesson, such as in a
bitmap or video resource.

Other instructional parameters are also under control of the developer. These include the
phrasing of virtually all text messages to the student and the use of certain system generated
facts, namely those involving part-of and location attributes in exercises.  Developers may also
specify the number of times a student must correctly answer a question about a fact before
XAIDA considers the fact to be known (default = 2); criteria for exiting a practice session
(default = 100% of presented facts are known); and whether practice sessions should occur
every time a student finishes viewing all the sub-parts of a part (the default) or only at the end
of a lesson.

XAIDA and Other Physical Characteristics Tutors

XAIDA provides a more thoroughgoing instructional treatment of physical characteristics
information than any other knowledge-based system for maintenance instruction we know of
(Hsieh, 1997).  Most other ITSs for maintenance instruction have had simulation as their
centerpiece; physical characteristics instruction, if available at all, is a lagniappe.  RIDES, for
example, is a powerful and well-designed system for developing equipment simulations which
includes a facility for easy development of various types of exercises.  However, these
exercises are non-adaptive, and their inclusion with the meat of the instruction (i.e.,
manipulation and exploration of the simulation) is left to the discretion of the developer.1

Merrill’s (ID 2 Research Group,1995) Electronic Trainer (ET) is the only other system we
know of for which factual information is bread-and-butter.  ET also generates questions from
developer input.  However, XAIDA’s knowledge representation is more fine-grained and open-
ended than ET’s, so that XAIDA can ask about more kinds of information (anything that can be
expressed as a part-attribute-value triplet) and can use a greater variety of questioning schema
(eleven for XAIDA versus three for ET).  In addition, XAIDA provides adaptive practice (albeit
simple).

The teaching of associative knowledge has not been a hot area for ITS R&D, possibly
because it is considered to be well mapped out.  However, the need to teach factual information
is clear and widespread, in maintenance training and in many other domains as well.  An easy-
to-use authoring tool for associative knowledge would certainly both fill a gap and be very
handy to have around, as our own experiences fielding XAIDA have borne out (see the section
below, Research with XAIDA).

THEORY OF OPERATION

The Theory of Operation shell provides instruction in the theory governing a device’s behavior.
The main goal of this instruction is that of teaching students to reason about the behavior of a
device. In particular, it teaches students how to use rules to infer unknown characteristics of a
device’s behavior from known antecedents of those characteristics. Examples of such
inferences include (a) inferring the position of an hydraulic actuator from the pressures on each
side of the actuator’s piston, (b) inferring the output of a binary circuit from the circuit’s inputs,
and (c) inferring whether or not an automobile will start from knowledge of the factors (fuel,
battery condition, etc.) needed for the operation. Inferences such as these are important in both
the normal operation of the device and in successful troubleshooting. The many uses of such
knowledge are described in Kieras (1988).

The most critical issue in teaching theory of operation is the choice of an ontology or
epistemology in which theories of operation can be cast. There are two major considerations in
this choice: power and accessibility. Power refers to the ontology’s ability to support reasoning
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about a wide range of systems. For example, representing systems in terms of multiple,
simultaneous constraints, such as circuit laws, is a powerful and widely used basis for scientific
reasoning. Accessibility refers to ease of use of the ontology by both students and developers.
Thus, constraint-based systems, in spite of their power, are not very accessible in the sense used
here. The typical technician or student in technical training does not solve problems or explain
device behavior using systems of simultaneous constraints. Rather, they tend to offer
explanations in terms of causes and effects. For example, in a digital logic circuit, the inputs to
a gate are often viewed as causing the output to take on a certain value. Causal models have
important limitations in dealing with many physical phenomena, but, judging from their
ubiquity in technical training, they have much to offer in the way of accessibility. Because
accessibility is a prime goal in the design of XAIDA, we have adapted a causal reasoning
scheme to teach theory of operation. This choice gives us the opportunity to study the strengths
and weaknesses of causal reasoning in an environment where the causes and effects are given
explicit, formal representations.

Knowledge Representation: Causal Models

XAIDA uses a simple cause-and-effect scheme to represent a device’s theory of operation.
There are two components to this scheme. Variables represent the principles governing the
device’s operation, and Cases represent pedagogically salient applications of those principles.
We refer to a set of variables (along with their interdependencies) and cases as a causal model,
or more simply a model. This use of the term should not be confused with the term "student
model."

Variables

A device’s theory of operation can be understood in terms of a number of variables, each of
which takes on a value taken from a fixed set of values. The values of some variables are
determined by the device’s operator (e.g., a switch or dial setting), a state of nature (e.g.,
ambient temperature or wind velocity), or some other external agent (e.g., a generated signal).
We refer to these as setting-based variables. The values of variables that are not settings are
functions of other variables. Because these functions are usually cast as systems of rules, we
refer to their variables as rule-based variables. Rule-based variables correspond to indicators
such as meters and lamps and to intermediate variables such as signal strength and hydraulic
pressure.  To give the reader a better sense of this scheme, Table 2 lists the variables governing
the simple hydraulic circuit shown in Figure 4.

Figure 4. Simple Hydraulic Circuit.
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Note that the scheme described here is not a completely general causal reasoning scheme.
In particular, it does not allow for sequential or time based effects.  That is, a variable’s value is
not determined by its value or the value of any other variable at some previous time. In
addition, feedback is not permitted the system. A variable cannot be a function of its own value
either directly or indirectly.

Table 2. Variables for a Simple Hydraulic Circuit

Variable Type Variable Name Possible Values/Rules

Setting Power off, on

Control Valve Position extend, retract

Rule-Based Return Line Pressure 1 3 psi1

Pressure Line Pressure 2 If Power = off then 0 psi

3 If Power = on then 3000 psi

Retract Line Pressure 4 If Control Valve Position = retract and Pressure Line
Pressure = 0 psi, then 0 psi.

5 If Control Valve Position = retract and Pressure Line
Pressure = 3000 psi, then 3000 psi.

6 If Control Valve Position = extend then 3 psi.

Extend Line Pressure 7 If Control Valve Position = retract, then 3 psi.

8 If Control Valve Position = extend and Pressure Line
Pressure = 0 psi, then 0 psi.

9 If Control Valve Position = extend and Pressure Line
Pressure = 3000 psi, then 3000 psi.

Actuator Position 10 If Return Line Pressure ≥ Extend Line Pressure then
retracted

11 If Extend Line Pressure > Return Line Pressure then
extended

Cases

XAIDA provides instruction on theory of operation in the context of particular combinations of
settings called cases. The set of cases to be used in instruction is provided by the developer.
Ideally, XAIDA should generate the cases, but such a capability is not feasible for both
theoretical and practical reasons. Hence XAIDA requires the developer to select a pertinent set
of cases and, by way of support, audits that set to ensure complete coverage of all rules.

Each case has two parts: a set of initial settings and a set of actions. The initial settings are
those that characterize the device in some beginning state. The actions specify the settings that
bring the device to the state addressed by the case. For example, to explain how the simple
circuit in Figure 4 behaves when the pump is turned on and the control valve is in the retract
position, we would define a case in which the initial settings are Power = off, Control Valve
Setting = retract and which has the actions Power = on, Control Valve Setting = retract.

XAIDA elaborates each case into a sequence of steps. The first steps correspond to the
actions. The remaining steps are the results of applying the model’s rules to determine the
values of rule-based variables. For example, the case described above would have the following
steps.
                                                     
1 Rules are written in the form “v” to indicate that the rule’s variable always takes on the value v, or in the
form “if e then v” to indicate that the rule’s variable takes on the value v whenever the logical expression
e evaluates to true.
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1. Power = on (Action).

2. Control Valve Setting = retract (Action).

3. Return Line Pressure = 3 psi (Rule 1).

4. Pressure Line Pressure = 3000 psi (Rule 3).

5. Retract Line Pressure = 3000 psi (Rule 5).

6. Extend Line Pressure = 3 psi (Rule 7).

7. Actuator Position = retracted (Rule 10).

The steps are ordered to reflect the order of rule application using a forward reasoning
scheme.

Normally, a model will have several cases: one that illustrates the device’s basic function
and others that, taken together, exercise all of its rules.

Instructional Materials

As is the case with semantic networks, XAIDA relies on certain instructional materials to
convey the content of causal models to students and to allow students to communicate with
XAIDA about these models.

Figure 5. Theory of Operation Browser (Upper Panel) and Variable Inspector (Lower Panel).

Indicator Graphic



Four Easy Pieces: Development Systems for Knowledge-Based Generative Instruction

13

Each model, variable, setting value, rule, case and case step has a name, a description, and
a resource list. In addition, each model has a background upon which upon which rule and
value indicator graphics are overlaid. These indicator graphics are bitmaps associated  with
each setting value and each rule. An indicator graphic depicts any visible manifestation of the
variable value (see Figure 5).

With the foregoing description of XAIDA’s representation of maintenance knowledge and
materials for the presentation of that knowledge, we turn to the instructional procedures that
XAIDA uses to convey this knowledge to students.

Instructional Delivery

As is the case with the Physical Characteristics shell, the Theory of Operation shell has two
modules:  a browser, which presents the theory of operation of a device, and a practice module,
which provides practice in making inferences. Available as part of both modules is a variable
inspector that students can use to look up rules and other information related to variables.

The Variable Inspector

The student interface to the Theory of Operation shell is shown in Figure 5. Note that each
variable has a panel displaying its name, a momentary value, and an “i” button. This button
brings up a Variable Inspector with detailed information on the variable, namely, its
description, its resources, and its rules.

The Theory of Operation Browser

The Theory Browser, like its Physical Characteristics counterpart, introduces each model with
an overview. It then provides a detailed presentation of each case. The theory browser also has
an exploratory capability that allows students to construct their own cases and a review
capability like that of the Physical Characteristics browser.

Overview. Instruction in a device’s theory of operation begins with an overview in which
the student is shown the model’s description, its background, and panels used to present
information on variables. As the student allows the mouse to hover over a panel, a description
of the variable appears in a text pane.

Presentation. Presentation of the model proceeds on a case-wise basis. The presentation of
each case begins with the case description. At the developer’s option, a list of initial conditions
can be appended to this description. Each step in the case is then presented. If the step involves
the application of a rule, then XAIDA presents the rule description as the step is discussed (see
Figure 5).

Exploratory mode. Exploratory mode allows the student to construct his own cases and
view the behavior of the model in those cases. Construction of a case is a three step process.
First, the student chooses values for each of the settings using pull-down menus in the variable
panels. Second, XAIDA “runs” the model by recursively applying rules to determine the values
of rule-based variables. Finally, all of the steps in the case are presented in the same way as the
steps of a developer-defined case is presented.

Review. As is the case with the Physical Characteristics browser, students can review
previously presented material but normally cannot skip ahead in the curriculum. These review
capabilities can be invoked through the tabbed interface shown in Figure 5 or by selecting items
in the list of topics.

Practice

The Practice phase consists of a sequence of exercises that require students to infer the values
of rule-based variables using the rules that govern those variables (see Figure 6). Practice is
administered by a miniature ITS of the same sort used in the Practice phase of the Physical



Hsieh , Halff and Redfield

14

Characteristics shell. As with the Physical Characteristics shell, this ITS can be discussed in
terms of its components, namely, an expert module, a student model, an instructional module,
and a student interface.

Figure 6. Theory of Operation Exercise. (Note: The student’s task is to enter the correct value
(3 psi) in the Retract Line Pressure panel.)

The expert module. The expert module of the ITS consists of the collections of variables
and cases described above. All of the expert module’s inference knowledge is pre-compiled in
the cases. In particular, the expert module has two basic capabilities. Given a rule, it can select
a case in which that rule is applied, and it can apply rules to determine variable values in any
case. As it turns out, these two capabilities are all that is needed for effective tutoring.

The student model. The student model for Theory of Operation is rule-based in much the
same way that the student model for Physical Characteristics is fact-based. Each rule in the
model is deemed to be mastered, partially mastered, or unmastered, and its state is determined
after each opportunity to apply the rule. An opportunity arises in the course of an exercise when
the student is asked to supply the value of the rule’s variable under conditions where the rule
applies.

All rules start in the unmastered state. A single successful application of the rule moves it
to the partially mastered state. A second successful application moves it to the mastered state. A
failure to correctly apply the rule moves it to the unmastered state.

The instructional module. The instructional module uses a four-step process to construct
an exercise:

1. A target rule is selected using a random mechanism that is biased towards unmastered
and partially mastered rules.

2. A case is randomly chosen from among all those where the rule applies.
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3. An exercise type is selected. Three types of varying complexity are available. Selection
of the type is biased by the state of the target rule so that more complex exercises are
chosen for rules in more advanced states of mastery. Figure 6 shows an exercise of the
lowest complexity.

4. A response mode is randomly selected. Two modes are available: selection of values
from a pull-down menu or keyboard entry of values.

Feedback is provided when the student indicates that he is “Done” with the problem (see
Figure 6). The system reviews each of the variables whose values were to be supplied by the
student. The student is shown the correct value of the variable and the rule that applies. If the
student supplied an incorrect answer, this fact is called to his attention before presenting the
correct answer.

The student interface. As with the Physical Characteristics shell, considerable support is
provided to students working Theory of Operation exercises. The options available to students
are roughly the same as those available in the Physical Characteristics shell. The hint option in
Theory of Operation exercises randomly chooses a rule that applies to the exercise and directs
the student’s attention to that rule.

Any of four conditions terminate a practice session. The student can request  a
termination. A preset time limit can be exceeded. A preset limit on the number of exercises can
be exceeded. The student can master a preset percentage of the rules. The student can return for
more practice even after a termination criterion has been exceeded.

Lesson Development

Theory of Operation lessons require the specification of three types of knowledge: models,
variables, and cases. Developers can enter basic data for a model using a WYSIWYG editor
similar to that used for Physical Characteristics. This editor allows the developer to enter or
edit a model’s basic data: its name, description, resources, variables, and cases. Variables can
be added and edited using the Variable Inspector described above. In its editing mode, this
inspector provides access to the variable’s name and description. The variable’s variables or
rules are edited using a form-based rule editor. Part of this editor is a structure-directed editor
for constructing the conditions and actions that make up each rule.

XAIDA and Other Theory of Operation Tutors

Theory of operation instruction has been of some concern to the training community.
Traditional instruction on these topics focused on problem-solving skills since predicting the
behavior of a device or system can be viewed as a problem-solving exercise. Hence, it is not
unusual for technical training courses to devote considerable attention to basic scientific and
engineering principles such as theory of electrical circuits or fundamental hydraulics. Worth
noting is that the traditional approach to problem-solving of this sort is that of traditional
scientific reasoning based on simultaneous constraints such as circuit laws. Students are taught
to predict system behavior in much the same way that college students are instructed in
introductory science courses. The reasoning skills needed to solve these academic problems are
often not those needed to solve technical problems in equipment. In addition, they are not very
scaleable. It is within most individuals’ reach to solve circuit problems involving a few
components, but not within most people’s reach to solve the same sorts of problems in circuits
with hundreds of components.

Responding partly to a concern that students acquire only rote problem solving skills
instead of deep understanding, partly to technological opportunities, and partly to the concerns
mentioned above, more recent approaches to theory of operation training are based on
experiential methods and on simulation in particular. This trend is reflected in development
systems such as RIDES (Munro, Pizzini, Towne, Wogulis, & Coller, 1994), RAPID (Emultek,
1995), and PowerSim (Byrknes & Myrtveit, 1997), that support the development of complex
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system simulations. These systems take a hands-off approach to theory-of-operation training.
They allow the user to explore system behavior, but do not, in general, make explicit the
strategies and procedures needed to reason about this behavior. Nonetheless, simulation-based
training is viewed as a useful, and often necessary part of technical training. Worth mention in
connection with simulation-based approaches is the difficulty of constructing simulations, even
with the advanced development systems mentioned above. PowerSim simulations for example
may require the construction of thousands of processes, each of which must be individually
configured. RIDES simulation development requires mastery of a powerful but complex
programming language for modeling the behavior of components. Furthermore, some critical
simulation capabilities are next-to-impossible in all of the simulation packages that we have
surveyed. Assembly, disassembly, and other gross structural changes, for example, are difficult
to simulate.

XAIDA’s approach has the spirit of traditional problem-solving approaches but the content
of simulation-based approaches. That is, it addresses theory of operation as a problem-solving
process and makes explicit the principles to be applied in the process. Those principles are not,
however, the constraints used to reason scientifically about device behavior, but rather rules
that embody reasoning in terms of causes and effects. It is our feeling that these causal
reasoning schemes simplify the problem-solving process, thereby easing both its acquisition
and application.

One other system, Merrill’s (1997) Instructional Simulator, addresses theory-of-operation
training as does XAIDA. The Instructional Simulator models systems in terms of causal rules
and makes those rules available to students in the course of instruction. It also features a
number of instructional methods, each of which draws upon the same knowledge base of
variables and rules. The main difference between XAIDA and the Instructional Simulator is
that the latter offers considerably more flexibility in constructing a simulation. The developer,
however, pays the price for this flexibility in terms of ease of use and learnability.

PROCEDURES

The need to teach procedures to maintenance technicians is obvious.  Less obvious is what
technicians need to know about a procedure and how that knowledge should be conveyed. The
approach we have taken in the design of the Procedures shell is derived primarily from
observations of classroom instructors in action (under the assumption that since the classroom
teaching “medium” has survived for many centuries, there is likely some merit to it).

In these observations, we noticed instructors would typically give an introduction, then
demonstrate each step in a procedure while talking about it.  Types of things they would talk
about included reasons for performing the step, tips for doing it right, how to know it has been
performed correctly, potential problems to watch out for, and how to recover from those
problems.2 Typically also, if equipment was available, they would then have students perform
the procedure for themselves, and assist as necessary.

The idea of providing ancillary information about steps while teaching them makes sense
to us because we believe there is much that goes on in the brain when performing a procedure--
more than just the mechanics and sequence of executing the steps (which is the typical focus in
other systems for teaching procedures).  One of our authors had a epiphany of this sort while
performing a simple procedure using XAIDA itself.  We decided to design the Procedures shell
to accommodate this type of information.

Knowledge Representation: Semantic Networks

Like Physical Characteristics, the Procedures shell uses a semantic network to represent
knowledge about a procedure.  Each node in the network represents a step, except the root
node, which is the procedure itself.  Associated with each step node are a name, a description,
an illustration, an action-object-tool-and-background combination, a position in the procedure,
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and any number of user-defined facts, multimedia resources, and problems (i.e., undesirable
events which may occur while performing a step or procedure).

Procedures are cast as semantic networks, not unlike those for devices in the Physical
Characteristics shell. A fragment of the network for a procedure is shown in Figure 7. Note that
the network is, for the most part, a decomposition of the procedure into a sequence of steps.
Also associated with the procedure are problems that may arise in the course of the procedure
and any other notes that the developer deems pertinent, for example, the schedule note in
Figure 7.

Step 1

Step 2

Step 7

Step 10

Tool

Action

Object

Reason

RecoverMishap

Mistake Avoid

Schedule

Mistake Avoid

Location
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fluid level.
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running.

…

Wipe 
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Read 
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Remember to 
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Restart 
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otherwise.

Engine 
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…

Monthly

Fail to warm 
up engine

Drive car 15–
20 minutes.

Background

Figure 7. Fragment of an XAIDA Procedure Knowledge Representation.

Steps

The information associated with each step, like that associated with the main procedure consists
of problems and attributes. In addition, a schema is associated with each step that designates the
tool, if any, used in carrying out the step, the action required of the technician, and the object
that the step acts upon. Any number of actions can be associated with an object. Each object
has a location on a developer-designated graphic called the background. Backgrounds can have
several objects and can be associated with more than one step. The tool-action-object schema is
used to allow the student to practice executing the step and recalling its components.
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Notes

Just as developers can add facts to physical-characteristics semantic networks, so can they add
notes to a procedure or any of the procedure’s steps. The “schedule” and “reason” notes in
Figure 7 are examples of notes. Developers can designate notes as either optional or obligatory.
The former can be skipped by the student and are not addressed in practice. The latter must be
viewed by the student and are addressed in practice.

Problems

Developers can describe problems that arise in the course of the procedure or in the course of
particular steps. There are two types of problems. Mistakes are problems that arise as the result
of “technician error.” Developers can associate with mistakes information on how to avoid
mistakes and how to recover from them. Mishaps are problems that arise by accident, hence
avoidance information is not pertinent to mishaps. Developers can, however, provide recovery
information about particular mishaps.

A Focus on Simple Procedures

It should be noted that a Procedures network can only accommodate a single procedure at this
time.  That is, subprocedures must be fleshed out in separate networks (which in turn must be
presented in separate Procedures lessons).  This differs from the Physical Characteristics shell,
in which a single lesson may present a system with many levels of subparts.  However, in the
future we hope to allow developers to link in other Procedures lessons as resources from within
a Procedures lesson.

Also worth noting is that the shell does not address two central issues in the representation
of procedures, namely, cognitive operations and branching. We have purposely bypassed these
two issues, partly because they are not central to most maintenance procedures and partly
because they have received extensive treatment both in the instructional literature and the
artificial intelligence literature. We do, however, explicitly address some important aspects of
cognition and branching that have not been given extensive attention, namely, recognition of
problems that arise during execution of procedures and steps to recover from these problems.

Instructional Materials

Instructional materials for procedures training are of several sorts.
Virtually all elements of a procedure knowledge base have names, descriptions, and

resources, as do elements of the knowledge structures for the two shells discussed above.
Illustrations are used to show the student the procedure as a whole, each of its steps,

problems, avoidance procedures, notes, and recovery procedures. These illustrations can be
text, graphics, video, or a slide show. Players are provided for the latter two methods.

Portrayals are used to give the student practice with a procedure. A portrayal consists of a
background graphic along with locators for a number of objects. The locators can be labeled,
and, when selected present a menu of actions available for the object. A multilevel capability
allows students to zoom in and out through multiple backgrounds when a procedure addresses a
particularly complex system.

Because procedure training is often conducted in the context of technical documentation,
procedures, steps, and problems can have hypertext links (html anchors) to electronic
documentation so that students can consult the documentation during training.

Instructional Delivery

Like XAIDA’s other three shells, Procedures incorporates a browser and practice.
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Browser

The browser presents information in sections.  There are separate sections for the introduction,
an overview of the procedure, presentation of each step in the procedure, and problems
associated with the procedure as a whole. Students may explore material from any section in
the browser at any time, or simply keep pressing Next for a sequential presentation.

The Introduction (Figure 8) consists of an instructional objective and any number of
developer-specified resources.  Material in the Introduction is not used in generating practice
questions.

Figure 8. Procedure Introduction.

The Procedure Overview (Figure 9) presents the name and description of the procedure,
any associated facts and resources, and a procedure overview.  If the developer does not specify
a procedure overview, XAIDA will by default create one by concatenating the illustrations
from all the steps.

The Step Presentation (Figure 10) sections present material associated with each step.  If
any mistakes or mishaps have been associated with a step, they are presented immediately after
that step--mistakes first, then mishaps.

The Procedure Problems section presents mistakes and mishaps associated with the
procedure as a whole.  These are problems which either affect the performance of the whole
procedure, or which can’t be associated with any particular step.  Again, mistakes are presented
first, followed by mishaps.

Practice

The Procedures shell’s design calls for 19 types of practice questions, similar to those
employed in the two shells described above. One of these types is illustrated in Figure 11. As in
the other shells, the practice environment is fully supported with hints, a lookup capability and
detailed feedback. Unlike the other shells, the design of the Procedures shell calls for practice
during presentation and in three other contexts as well.3
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Figure 9. Procedure Overview.

Figure 10. Step Presentation.
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Embedded practice.  The purpose of embedded practice is to intermingle practice with the
presentation of the steps and main procedure, under the assumption that immediate practice
makes learning more interactive and facilitates recall of the material just presented.  There are
three occasions where an embedded practice item will occur. After the presentation of a step,
but before presentation of its associated mistakes or mishaps, XAIDA asks the student to select
the appropriate tool-action-object combination for that step (see Figure 11). After the
presentation of a mistake/mishap and its how-to-avoid/normal condition, XAIDA shows two
pictures and asks the student to select which depicts a correct/normal condition. Finally, after
the presentation of how to recover from a mistake or mishap, XAIDA asks a text multiple
choice question about how to recover.

Figure 11. Do-Step Practice Display.

Review practice. Review practice incorporates a technique human instructors sometimes
use to help students go over recently presented material.  Its purpose is to reinforce both the
sequence of the procedure and the things to think while doing the procedure.  It achieves this by
asking questions about the material just presented in a “tell me what I told you” fashion.  For
example, in reviewing a step and an associated mistake, it would ask:

<given an illustration> What step is this?
Pick the reason(s) for fill reservoir to half-way mark.
Do this step.
What mistakes are associated with fill reservoir to half-way mark?
What problem is this?
Why is this wrong (or abnormal)?
<Given problem label> How would you avoid this problem?
<Given problem illustration> How would you recover from this problem?

For the sake of variety, the phrasing and sequence of questions may vary within review
practice for a given step; however, the procedure or step the questions are based on will always
be the same.  For example, when asking about the reason for a step, XAIDA might in one
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instance have the student refer to the name of the step and in another instance a picture of that
step.

Procedure practice.  The purpose of procedure practice is to allow concentrated practice on
performing the steps of a procedure in order.  The student is asked do-it questions (see Figure
11) for each step in succession. Feedback is provided after each incorrectly performed step.
The student is allowed to continue the procedure after making an error; but at the conclusion of
the procedure, if he has made greater than some criterion number of errors (default = 0 errors),
he is required to repeat the procedure from the beginning.

Extended practice.  Retrieval demands are not always sequential.  Therefore it is necessary
to provide practice under non-sequential conditions.  The purpose of extended practice is to
reinforce the student’s knowledge of procedure-related information by providing non-sequential
practice.  As in Physical Characteristics, XAIDA utilizes an algorithm to select a set of triplets
to ask about.  All triplets are eligible for questioning, but the algorithm causes XAIDA to tend
to ask about material the student has not mastered yet.  However, unlike Physical
Characteristics practice, which jumps from question to question with no regard for
conversational flow, Procedures at least attempts to ask questions in related groups--e.g., it will
ask about several questions in a row concerning a selected step or attribute.

Lesson Development

There is no Develop software available for Procedures.  However, it would be very much like
Physical Characteristics Develop in having mostly WYSIWYG editing with a few forms as
needed.  We have also explored the idea of using wizards for initial data input, and the
WYSIWYG screens for further editing and/or tweaking.

XAIDA and Other Procedures Tutors

In the introduction to this Procedures section, we stated that XAIDA’s approach to teaching
maintenance procedures is based on our observations of the kinds of things classroom
instructors say and do.  We have identified two other computer-based approaches to teaching
procedures.

The first is to demonstrate a procedure, and then with varying degrees of instructional
support, allow the student to practice the procedure using a graphical simulation of the
equipment.  This could probably be characterized as a classical computer-based approach to
teaching procedures, and is found in systems dedicated to teaching a particular subject (e.g.,
Orey et al., 1995), as well as in authoring tools.  A exemplary authoring tool which uses this
approach is RIDES (Munro et al., 1994).  In RIDES, the developer’s main tasks are to create the
graphical simulation and define the sequence and degree of support.

The second approach, used by the Instructional Simulator (Merrill, 1997), is similar to the
first in that the system teaches a student the steps in a procedure and gradually fades
instructional support until the student can do the procedure independently.  The primary
difference is in the manner in which the instruction is created.  In the Instructional Simulator,
procedures are derived from a developer-defined qualitative model of how the system works.
After the model has been defined, a developer or student simply specifies a goal and a set of
initial conditions, and the system automatically generates both the procedure and the instruction
for the procedure.  This is a very easy way to generate instruction as long as the steps the
student must perform match the model.

The primary difference between the approach used by XAIDA’s Procedures shell and
those used by these other systems is that XAIDA addresses not only correct sequence and
performance of steps in a procedure, but also other types of knowledge related to step
performance, such as reasons, mistakes, and mishaps. We view this approach as a first step
towards incorporating notions based on theories of action (Miller, Galanter, & Pribram, 1960;
Norman, 1981) into instructional practices. These theories call our attention to the ubiquity of
human error in even the simplest of performances, to the loose coupling of intention and action,
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and to the pervasive role of feedback in training and performance. Learning a procedure is not
just a matter of learning the sequence of steps; it also involves to a large extent, how to
accomplish what is intended at each step.

TROUBLESHOOTING

Troubleshooting, by reputation if not in fact, is one of the most critical objectives in
maintenance training. The task itself is easily characterized. A system consists of a number of
components, at most one4 of which may be faulted. Clues to a fault’s identity or location are
available through a number of tests; the results of each test are determined by the fault state of
the system. Furthermore, each component in the system can be replaced or repaired. A cost can
be assigned to each possible test, repair, or replacement. Troubleshooting is the practice of
testing, repairing, and replacing components in such a way as to eliminate any fault.
Troubleshooting performance can be evaluated in terms of the total cost of the operation and its
effectiveness in eliminating any faults.

Troubleshooting skills appear to be as complex as the task itself appears to be simple, and
training requirements vary widely. As a gross oversimplification, we can say  that effective
troubleshooting calls for a space-splitting approach, that is, a sequence of observations that
narrow the fault down to successively smaller regions of the system. The keys to successful
troubleshooting are choice of a maximally informative test at each point and accurate
interpretation of the test’s results. Troubleshooters sometimes rely on system-specific
troubleshooting guides or procedures to lead them to the faulted component. At other times they
analyze the functional dependencies among components to determine the best test and interpret
its results.

XAIDA is concerned with system-specific troubleshooting procedures, those normally
found in technical documentation. An examination of training and technical manuals presents a
clear picture of these procedures.

First, virtually all of them rely implicitly on space splitting. They are typically presented to
readers in the form of unannotated decision trees, but an analysis of these trees reveals
sequences of decisions which confine the possible fault location to increasingly smaller
subregions of the system.

Second, the structure of the troubleshooting procedure is almost never made explicit in its
documentation. In particular, the documentation discusses neither what region or module a test
addresses or what can be concluded from the test’s outcome. XAIDA teaches students how to
reach these implicit conclusions as they follow the troubleshooting procedure. The rationale for
this choice of an instructional goal is treated below, but is best understood in the light of
XAIDA’s training methods.

Knowledge Representation: Fault Trees

As is mentioned above, XAIDA’s troubleshooting training addresses both the procedural
aspects of troubleshooting, that is, how to select and sequence tests, and the reasoning
processes that should be employed during the troubleshooting procedure, that is, what
conclusions can be drawn from each test. This knowledge is captured in a structure called a
fault tree. Figure 12 exhibits one such tree, adapted from Halff (1990b), illustrating an
abbreviated troubleshooting procedure for a no-start condition in a T-38A aircraft.

Nodes in the structure represent regions of the system. Consistent with current practice, we
refer to a fault tree’s terminals as components, to its root as the system, and to non-terminal
nodes as modules. The troubleshooting procedure calls for successively testing modules and
submodules until the fault is localized to a component. The component is then repaired (or
replaced).
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Figure 12. Fault Tree for T-38A.

Links represent tests of the nodes to which they point. Associated with each test are two
outcomes, one indicating that the target node (module or component) is functioning normally,
the other indicating that the node is malfunctioning. A special last resort link implicates its
target when all other possibilities have been eliminated.

The fault tree encodes a troubleshooting procedure for the system. Implementing the
procedure is a matter of traversing the tree using the following recursive procedure.

To troubleshoot Region M,
if M is a component then repair/replace it;
otherwise,

test each of its subregions until you find one (M’) that fails or that is
implicated by elimination (a last resort);
then troubleshoot M’.

Note that the system can reach an impasse if a module fails its test, but all submodules pass
theirs. This happens quite often in real systems. XAIDA  precludes this kind of behavior by
ensuring that a test fails if and only if a component of the module tested is faulted. Also note
that XAIDA enforces a specific testing order for submodules.  This constraint is consistent with
existing maintenance practices and can be justified on economic grounds. In this regard, note
that only one submodule of a module can be implicated by elimination, and that this module
comes last in the testing order.

Some links in the fault tree are distinguished as symptoms. A symptom is a direct
manifestation of a system malfunction, for example, a failure of the system to start. Symptoms
function as tests because they carry diagnostic information about possible faults, but they also
serve as entry points to the troubleshooting procedure since they represent occasions for
troubleshooting. Indeed, every fault has a single (but not unique) symptom.

Related to the notion of a symptom is that of a scenario. A scenario is a particular
manifestation of a symptom. It may be a trouble report, a video showing how the system
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malfunctions, or other stimuli of this sort. Any number of scenarios can be associated with each
symptom. XAIDA randomly chooses one at the beginning of each exercise.

Instructional Materials

Troubleshooting lessons contain an introduction that is virtually identical to that used by the
physical characteristics shell. In the former however, the lesson outline is replaced by a
graphical depiction of the fault tree.

A variety of materials are associated with elements of the fault tree. Each module,
component, fault, test, and repair has a name and a description. Modules and components can
have graphical portrayals and links to Physical Characteristics lessons. Tests and repairs can
have links to Procedure lessons. Associated with each test is a description of the normal
outcome, a description of the failure outcome, and resources illustrating each of these two
outcomes. Certain materials can also be associated with scenarios. For example, a graphic or
video might be used to exhibit a malfunctioning system, or text might be used to simulate a
filed trouble report or complaint.

Instructional Delivery

XAIDA’s Troubleshooting shell, like the shells discussed above, consists of a browser and a
practice environment. The browser is presented as a Troubleshooting Guide as shown in Figure
13. The Troubleshooting Guide presents a number of different types of information, but its
main function is to exhibit the regions and subregions of the system and the test used to check
each module and component. Figure 13 shows that the Starting System module of the T-38A
aircraft consists of Ignition and Fuel modules.5 These submodules are listed in the order tested
and the testing procedure for each one is shown as well.

Module Marker

Submodule  Marker

Figure 13. Troubleshooting Guide. (Note the “sticky note” marking the module being
investigated and the tab marking the submodule under investigation.)

The practice environment is somewhat more complex. It consists of the Troubleshooting
Guide, a simulation of the system called the Stopgap Simulation System (SSS), depicted in
Figure 14, and a record of the troubleshooting procedure cast as a “Service Order” (Figure 15).

The SSS, depicted in Figure 14, allows the student to select tests or repairs and to view the
results of these actions. In particular, the student can choose to check any symptom, perform
any test, or repair any component. The results of the chosen action are then displayed to the
student. The SSS determines the outcome of an action by consulting the fault tree and the fault
state of the simulated system. A symptom is manifest whenever one of its associated faults is
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present. A component test fails if and only if the component is faulted. A module test fails if
and only if one of the module’s components is faulted. Repairs always succeed in removing any
fault from the replaced component.

Figure 14. Stopgap Simulation System.

The Service Order, depicted in Figure 15, contains a description of the symptom derived
from the chosen scenario. More importantly, it records in a sequence of notations, all
observations and the conclusions drawn therefrom. Each notation has three parts: the
observation itself, derived from the output of the SSS, the module or component tested, and the
implication (faulted or normal) of the observation about the condition of the tested module. The
student assembles the notation using a menu-based editor (shown in Figure 15) listing only the
possible observations, modules/components, and implications.

XAIDA’s instructional procedures for troubleshooting are based on practice in using the
procedure represented by a fault tree. That is, XAIDA dynamically constructs a sequence of
exercises, each of which requires the student to troubleshoot a system with a particular fault.
Understanding the procedure is a matter of understanding how systems and faults are selected
(curriculum construction) and how a particular exercise is conducted (practice).

Curriculum Construction

Troubleshooting curriculum construction in XAIDA is based on notions elucidated in Van
Lehn’s (1987) Step Theory and Reigeluth and Stein’s (1983) Elaboration Theory. The driving
notion is that the curriculum is divided into units that we call levels, each of which introduces a
new variant of the procedure. In our case, each level introduces a new fault. Practice at each
level consists of exercises on the new fault and on faults introduced at previous levels. Thus,
for the fault tree shown in Figure 12, Level 1 introduces the student to the circuit-breaker
component and its fault, Level 2 adds the static inverter, and so on.

It is also worth mention that, consistent with step/elaboration theory, the knowledge base is
pruned to the student’s current level. In particular, the material in the Troubleshooting Guide
addresses only the faults introduced at that level and the regions of the system that contain
those faults. Likewise, the SSS allows only those actions that pertain to the pruned region.
Thus, the student’s view of the system becomes more complex as he learns to troubleshoot
more faults.
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The exercises provided at each level are based on a student model similar to those
employed in the other shells. In particular, the first exercise at any level addresses the fault
introduced at that level. The second exercise addresses the fault introduced at the previous
level. Exercises beyond the second are chosen randomly from those at or below the current
level and in a fashion that is biased by a student model.

The student model tracks competence in two types of skills, that of choosing the correct
procedure to test or repair a module or component, and that of noting (on the Service Order)
what can be concluded from an observation. The system notes a student’s weaknesses in each
of these individual skills and tends to select those exercises that address the most weaknesses.
The student normally moves on to the next level when he or she exhibits no weaknesses at the
current level.

Figure 15. Service Order.

Practice

The responsibilities of the practice module are to provide an environment for support of
troubleshooting practice, provide for guidance in the form of a tutor, and track performance for
student-modeling purposes.

Practice environment. The practice environment, as is mentioned above, consists mainly of
the Troubleshooting Guide, the SSS, and the Service Order. A Navigator is also provided to
provide for the transitions between levels and exercises, and to allow for student-initiated
review exercises.
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Students complete each exercise using a three-step cycle.
1. Use the Troubleshooting Guide (Figure 13) to determine the next action (test or repair),

marking the Guide to indicate the module known to be faulted and the submodule under
test.

2. Use the SSS (Figure 14) to carry out the required action and observe the result.

3. Note the observation and what can be concluded from it on the Service Order (Figure
15), using the conclusion to guide the next cycle.

Note that students are required to keep detailed notes on the troubleshooting process. This
reflects a general principle, called the show-work principle by Van Lehn (1987) that requires
instruction to make explicit the normally implicit cognitive steps in a procedure. It also reflects
our concern for teaching students to make inferences about possible malfunctions; these
inferences are almost never made explicit in troubleshooting guides. The show-work
requirement also simplifies the task of a model-tracing tutor that guides practice.

Guidance. A model-tracing tutor (Anderson, Corbett, Fincham, Hoffman, & Pelletier,
1992) is a form of intelligent tutoring system that tracks a student’s progress during an exercise
in such a way that it can offer context-specific advice when needed, intervene when students
pursue nonproductive actions, and intervene when students manifest certain common bugs.

At their most sophisticated, model-tracing tutors operate in an exploratory environment
and exercise considerable sophistication in inferring student plans or bugs. XAIDA’s
troubleshooting tutor has none of this sophistication. It operates in a procedure-learning
environment, where students are never allowed to stray from the target procedure, and has no
inference powers since students are required to make explicit the results of cognitive
operations. Hence, the tutor knows precisely what needs to be done at each step in the
procedure. If the student asks for advice, the tutor responds with a discussion of the next step
(see Figure 16). If the students attempts an incorrect action, the tutor also responds with a
discussion of the correct action. In this regard, the only actions checked for correctness are
moving a marker in the Troubleshooting Guide, attempting an action in the SSS, and adding a
note to the Service Order. The tutor’s advice is context specific; it is formed by filling a
template specific to the required action with information from the process’ position in the fault
tree.

Figure 16. Example of Model-Tracing Tutor’s Advice.

Performance Tracking. The practice module must also be alert to weaknesses in the skills
tracked by the student model. This function is implemented by noting those occasions where
the student chooses an incorrect action from the SSS and those occasions where the student
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tries to enter an incorrect conclusion in the Service Order. The former type of error is taken as a
weakness in selecting a test or repair for the component or module under consideration. The
latter type of error is taken as a weakness in making the correct inference in response to the
most recent SSS observation.

Unlike the other XAIDA shells, the student model in the Troubleshooting shell puts the
student in an initial state of mastery of all skills. This decision reflects the fact that the student
has before him (in the Troubleshooting Guide) all of the data needed to make the correct move
at each point. The reader may well ask what, if initial mastery is presumed, does the
troubleshooting shell aim to teach. Our less than precise answer to this question is that the
training should (a) instill in the student the discipline of making appropriate inferences during
troubleshooting, (b) promote memorization of the material needed to make these inferences,
and (c) remediate any particular weaknesses in the student’s inference skills. Only the last goal
(c) is specifically tracked by the student model.

Instructional Development

As is mentioned above, we have not worked out the authoring procedures for the
Troubleshooting shell. The shape of such procedures however is clear. Apart from the
Introduction, the knowledge required for troubleshooting can be captured via three coordinated
editors. Developers would “write” the Troubleshooting Guide, thereby specifying the structure
of the fault tree along with material for the elements in this structure (chiefly modules,
branches, and tests). A secondary capability would allow developers to edit the SSS in order to
specify the consequences of tests, repairs and replacements. Finally, a scenario editor based on
the Service Order would allow developers to specify a collection of scenarios manifesting the
possible symptoms of each malfunction.

XAIDA and Other Troubleshooting Tutors

Most informed readers will, at this point, be asking themselves how XAIDA’s approach to
troubleshooting compares to other troubleshooting tutors including MITT/MITTWriter
(Norton, Wiederholt,  & Johnson, 1991; Wiederholt, 1991), RIDES (Munro et al., 1994), and
Sherlock (Lesgold, Lajoie, Bunzo, & Eggan, 1992). Put simply, these other tutors are
simulation-based and focused on problem-solving skills, whereas XAIDA’s Troubleshooting
shell is procedure-based and focused on pattern-recognition skills.

Simulation-Based vs. Procedure-Based Training

Perhaps the popular and effective training principle of all time is “Practice makes perfect,” and
the most straightforward implementation of this principle in troubleshooting is to provide
students with a simulations of a variety of faults and let them have at it. Although there is no
doubt that this approach is effective, there are (at least) two good reasons for rejecting it as a
panacea.

First, simulations are difficult to construct, particularly when one must simulate not only
normally functioning equipment but also all possible fault states. Consider the three systems
mentioned above. Sherlock’s simulations were constructed on the basis of a lengthy, expensive,
and effortful series of in-depth structured interviews with experts. Sherlock’s simulations
reflect nothing more than those experts’ consensus concerning all possible contingencies in the
system. RIDES uses a more principled approach to simulation and is considerably more
tractable than Sherlock’s development process. Still, a RIDES simulation of any complexity
requires considerable expertise on RIDES’ simulation techniques, and may be only distantly
related to the principles governing the function of the device. Only MITTWriter comes close to
a system that is approachable by novice developers, and its simulations are little more than
those provided by XAIDA’s Theory of Operation shell.
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Our survey of these and other simulation systems such as RAPID (Emultek, 1997) and
PowerSim (Byrknes & Myrtveit, 1997), have led us to the conclusion that simulation, although
a seductive and powerful methodology, is not the sort that is now easily accessible to SMEs.
We therefore took the step of trivializing the simulation aspects of XAIDA’s Troubleshooting
shell to a simple, table-driven mechanism (the SSS), one whose tables are small enough to be
easily constructed in the course of defining a fault tree. The developer that demands realism has
some recourse by using multimedia or other interactive programs (even a simulation) as
resources for the SSS.

Second, troubleshooting in the real world is largely procedure driven. Virtually every
complex piece of equipment comes with a troubleshooting guide. Students are often required to
employ the procedures in the guide, and it is likely that experts adopt these procedures to their
own use. But the procedures in troubleshooting guides in general have two major deficiencies.
First, they contain virtually no explanation of their rationale, that is, of the reasons for
undertaking any particular troubleshooting action or the conclusions supported by any
particular action. Second, they are, for the most part, incomplete and offer no assistance in the
many cases where they fail. As the consequence of these two deficiencies, a naive user of the
procedure will often find herself at an impasse without a clue of what has been discovered or
how to adapt the procedure to novel conditions. XAIDA offers a partial solution; it teaches
technicians what can be learned in the course of executing a troubleshooting procedure.
XAIDA’s solution, of course, is also incomplete in that it provides no practice in dealing with a
troubleshooting procedure’s failures. Ideal would be a combination of procedure-based and
simulation-based training, one in which the simulation-based training directly addresses failures
of troubleshooting procedures and takes account of progress made while following the
procedure.

Problem Solving Skills and Pattern Matching

Others (e.g., Rouse & Hunt, 1984) have pointed out that skilled troubleshooting has two
components: a problem-solving component used to deal with novel faults in unfamiliar
equipment and a pattern-recognition component used for familiar faults. The former is far less
efficient than the latter, but is often deemed to be more critical, partly because it is more prone
to failure, and partly because it is more interesting. RIDES and MITT and, to a lesser degree,
Sherlock, are all concerned with problem-solving skills. The choice is natural. These skills are
important, and computers, after all, are very good at solving troubleshooting problems. All
three systems have their own troubleshooting experts that can dole out troubleshooting advice
on demand for any circumstance. (It may or may not matter that the experts are so good that
their methods are well beyond the mastery of any human troubleshooter.)

XAIDA is more concerned with pattern-recognition skills, and consciously so. There are
three reasons for this focus. First, pattern-driven troubleshooting practices are both ubiquitous
and efficient. We wanted to make up for some of the neglect that they have suffered in the
training literature. Second, XAIDA gains its economic advantage as a system-specific trainer
whereas troubleshooting problem-solving techniques are, by their nature, system-independent.
Put differently, XAIDA is meant to be used by SMEs to develop training in the particular
methods that pertain to particular systems, hence the focus on ease of use and development
efficiency. Those interested in teaching general problem-solving techniques for troubleshooting
would be better advised to attack the problem at a level of generality greater than that of an
individual system. Otherwise they risk training people to use inefficient, problem-solving
methods in the very cases where more efficient pattern-recognition methods apply. Finally, we
felt more comfortable with a tutoring approach in which the expert model actually employs the
same approach that students are expected to master. The brute-force experts of simulation-
based approaches do not satisfy this constraint.
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CONCLUSION

We  conclude with a brief summary of XAIDA research, a description of where XAIDA stands
in relation to other ITS authoring tools, and directions for future research and development.

Research with XAIDA

As mentioned in the introduction, XAIDA’s main objective is to allow subject matter experts to
produce effective interactive courseware with minimal training and effort. To meet these
objectives, the design of XAIDA has been continually informed by a program of empirical
research involving developers, students, and the organizations that will ultimately use the
product. The following sections summarize the studies and their findings.

Studies Involving Students

There have been thirteen studies of students taking XAIDA lessons (see Appendix 1).  These
studies have investigated not only XAIDA’s overall instructional effectiveness, but also the
effectiveness of various elements of XAIDA’s instructional presentation, such as the browser
and the adaptive practice; the relative benefits of taking an XAIDA lesson individually or
within a team of two; and the benefits of audio.  These studies were also important in helping
us refine XAIDA’s Deliver interface.

Our results point to three conclusions. First, XAIDA is successful in almost any context at
promoting mastery of typical performance standards. Second, if students are intrinsically
motivated to master the material, XAIDA promotes the development of the deeper cognitive
structures typical of experts in the subject. Third, these deeper structures do not appear to
emerge if students are not intrinsically motivated to master the material.

Studies of Developers

Because major design goals for XAIDA are that it be easy to use and easy to learn to use, there
have been eight field studies of developers using XAIDA.  Typically, these studies have taken
place in the context of a three day training class for developers.  Issues of interest have included
usability of the software (both in general, and for specific interface elements), attitudes toward
XAIDA and instructional technology in general, changes in developer’s knowledge structures
after learning about XAIDA, the uses of XAIDA in classrooms and other less than ideal
settings, the impact of XAIDA on the structure of instructional development teams, and the
influence of XAIDA on Air Force organizational plans and policy (Wenzel & Dirnberger, 1997;
Wenzel et al., 1997). A brief summary of the eight field studies can be found in Appendix 2.
The types of data gathered are listed below.

4. Comments

5. Attitudinal - expectations and impressions - administered at six different points
throughout training

6. Journal files - record of user actions collected automatically by XAIDA

7. Behavioral - ability to perform selected development tasks

8. Self-reported computer skills - administered pre- and post- training

9. Self-reported XAIDA skills - administered pre- and post- training

10. Self-reported usability/understandability of XAIDA materials - administered after
training to assess ease of understanding and use of various development features,
interfaces, and support materials.

11. Knowledge structures - as measured using Pathfinder scaling methodology
(Schvaneveldt, 1990); administered after training.
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12. Self-reported organizational information - perceptions of various factors related to
organizational acceptance of new technology

The findings can be summarized as follows.  First, we have found that developers can
indeed create XAIDA lessons quickly and easily.  In fact, seven of the studies involving
students (listed in Appendix 1) utilized lessons created by XAIDA training alumni (Wenzel et
al., 1997; Wenzel & Ellis, 1997).  Our informal estimates of the time to develop a 1–2 hour
lesson is 3–4 days including training. One young high-school student serving an internship at
USAF Armstrong Laboratory developed a lesson after two hours of training and with only 24
hours of working on her own.

Second, although XAIDA was designed to be used by the maintenance training
community, it (the Physical Characteristics shell, in particular) has also proven to be quite
versatile—and in demand—for teaching certain topics within other domains, including
medicine, algebra, computer literacy, military customs and courtesies, and biology (see
Appendix 1 and 2 for a more detailed listing of lesson topics).  In fact, one developer, who
wound up teaching the material in her XAIDA lesson on parabolas on a day when XAIDA was
not available, reported that her lecture was successful because she had adopted the same
approach she used in her XAIDA lesson!  We believe this demonstrates 1) the ubiquitous
nature of factual knowledge; and 2) that there is a high demand for an easy-to-use authoring
tool for this type of knowledge.

Third, novice developers tend to want to implement their existing lesson plans.  It can be
difficult for them to grasp that their main task is not to teach the way they have always taught,
but to express their knowledge using XAIDA’s knowledge representation formalisms.  This
might not be an issue for a conventional authoring package such as Authorware, but since
XAIDA is knowledge based, it gets maximum leverage (in terms of instructional power and
development efficiency) when users work within the types of knowledge representation it
offers.  In fact, once developers catch on to the XAIDA way of thinking, they can often
implement much of their original lesson plan; but they have to learn to reformulate their
knowledge first (one developer compared the experience to wearing tight underwear).

XAIDA’s Place in the Domain of Knowledge-Based Authoring Tools

In this section we try to show where XAIDA stands in the context of other ITS developmental
research, particularly those listed in Table 3. In this discussion we point out some of the design
problems that authoring tool developers must address, the approaches that have been taken to
dealing with these problems, and the advantages and disadvantages of the various approaches.
We conclude each section with some comments about XAIDA.

Table 3. Selected ITSs and ITS Development Systems

ITS/ITS Development System References
Electronic Trainer ID2 Research Group, 1996
Eon Murray, 1996
Goal-Based Scenario Builder Bell & Kedar, 1995; Korcuska & Bell, 1995
GTE Van Marcke & Vedelaar, 1995; Van Marcke, 1992
MITTWriter Wiederholt, 1991; Johnson & Norton, 1992
REDEEM Major, 1995
RIDES Munro, Pizzini, Towne, Wogulis, & Coller, 1994

We structure this discussion in terms of Wenger’s (1987) four components of knowledge
communication in an ITS:  domain expertise, student modeling, pedagogical expertise, and
student interface.  Since XAIDA is an ITS authoring tool, we will address its approaches to
developer and student interfaces separately.
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Domain Expertise

At a minimum, the domain module of an ITS should contain the knowledge needed to teach the
domain.  The issues are 1) what knowledge is needed; and 2) how to represent it.  A good
knowledge representation scheme will not only contain the needed knowledge, but also make it
accessible for questioning and student modeling.

Generating a sufficiently rich and instructionally useful knowledge representation for a
given ITS application is a difficult task.  Teams of subject matter experts, knowledge engineers,
and programmers must often work together on this problem.  Deciding how knowledge should
be represented becomes even more difficult for designers of ITS authoring tools, because the
knowledge to be represented and the people that will be entering that knowledge are both
unknowns. Some approaches that have been taken to this problem include the following:

1. Assume a knowledge engineer will be available.  Eon is a suite of ITS tools intended
ultimately to be used on three levels.  At the top, or meta-level, a knowledge engineer
helps a subject matter expert or teacher to use the tools to represent the desired
knowledge.  This approach allows ITSs to be developed more quickly, while still being
tailored to the needs of a domain.  The disadvantages are first, that a knowledge
engineer must be available to help develop any new application.  Second, as with any
higher level software tool, there is some loss in representational power.

2. Represent as little as possible.  The Goal-Based Scenario Builder and other similar
tools in development at the Institute for the Learning Sciences are intended to capture
teaching architectures in forms that ordinary classroom teachers can use.  Examples of
teaching architectures include designs for learning-by-doing through investigation (Bell
& Kedar, 1995) and for making decisions based on incomplete or conflicting
information (Korcuska, Herman, & Jona, 1996).  To quote Bell & Kedar (1995), “the
designer essentially ‘fills in the blanks’ of the sample interface”.   The advantages are
that first, this approach captures and preserves several very creative instructional and
interface designs.  Second, with relatively little effort, non-programmers can utilize
these designs to create attractive CBT.  However, from a domain expertise point-of-
view, the knowledge that is captured is essentially intended to fill the needs of a
specific instructional approach, and cannot be used to reason with or be manipulated
for other instructional purposes.

3. Maintain instructionally useful knowledge in a knowledge base; link in the rest.  This
approach is used in a number of authoring tools, including REDEEM, the Electronic
Trainer, and XAIDA.  These systems vary in the amount of knowledge they represent,
and how they represent it.  In REDEEM, the knowledge resides on randomly accessible
pages of a Toolbook lesson.  The Electronic Trainer uses a knowledge base which
contains such information as captions for multimedia files, names and sequences of
steps in procedures, and examples and non-examples of concepts; but other types of
information must be linked in.  XAIDA has four separate, rather detailed knowledge
bases for physical characteristics, theory of operation, procedural, and troubleshooting
knowledge.  The advantage of this approach is that to the extent that authors are able to
develop a rich domain knowledge base, they also lay the groundwork for the student
model and pedagogical strategies.  The disadvantage is that there will probably always
be some instructionally useful knowledge that cannot be expressed in the available
knowledge representation schemes.

4. Put the knowledge in a simulation.  This approach is used in simulation tools such as
MITT Writer and RIDES.  The advantage of this approach is that in domains when
simulation is applicable (e.g., maintenance; console operations), simulation is a very
natural way to learn.  The disadvantage is that simulation is not always the most
appropriate teaching strategy for a given area. In fact, as a simulation becomes more
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sophisticated and effective as a simulation, it becomes more opaque and less effective
as a repository for instructionally useful knowledge.

For XAIDA, we have chosen to handle the representational problem with a combination of
approaches:  First, we have declared that XAIDA exists primarily for maintenance training, and
focused on representing the four types of knowledge mentioned previously.  This limits the
scope of what we have to represent.  Second, we use different knowledge representations for
different purposes—e.g., semantic nets for physical characteristics, causal reasoning for theory
of operation, and so on.  This allows us to present more and different kinds of knowledge, and
more importantly, gives us the granularity we need for detailed questioning.  Third, we allow
the author to link in any multimedia files she wants, so that she can say whatever she is not able
to describe adequately using XAIDA’s formalisms.

Student Model

The student model of an ITS should keep track of what the student knows at any given time.
The primary purpose of the student model is to allow the system to adapt instruction to the
student’s ongoing needs.  Issues to consider in developing a scheme for student modeling
include what to model and how to use it. Some approaches that have been taken to student
modeling in ITS authoring shell development include the following:

1. Don’t do it.  Often limited funding or research objectives preclude development of
student models.  For example on projects where the emphasis is on pedagogy, such as
the Electronic Trainer or the Goal-Based Scenario Builder, student modeling does not
appear to be an emphasis.  This approach side-steps both the problems and the potential
benefits of student modeling.

2. Student modeling is possible, but not automatic; and the decision about what to model
is relatively open.  RIDES, for example, includes a powerful authoring language which
could be used to develop a student model and adapt instruction accordingly.  At a
slightly higher level, Eon provides tools which allow the author to specify how the
student model will work, with a set of defaults.  GTE appears to use some form of
student modeling, it also appears to require deliberate effort on the part of the author.

3. Student modeling is not automatic and the ability to decide what to model is limited,
but it is easy to do.  REDEEM has a very approachable developer interface (consisting
of questions and a sliding scale for responses) for student modeling.  However, the
author can only make the decisions the system allows her to make.

4. Student modeling is automatic, but the model is simple.  XAIDA keeps track of
students’ mastery of the information in its knowledge bases based on their performance
on practice questions.  XAIDA adapts training by its tendency to ask questions about
material it thinks the student has not mastered.

XAIDA’s student model is simple, in that it only monitors students’ performance on
practice questions, but we believe it provides good bang for the buck.

Pedagogical Expertise

The pedagogical module represents an ITS’s approach to teaching a particular domain.  A good
pedagogical module uses sound instructional strategies to achieve valid instructional goals.
However, since comparisons of the soundness of any particular tool’s instructional approach
can be controversial, we will sidestep the issue here, other than to say that most tool developers
want to somehow minimize the likelihood that their tool will be used to develop poor
instruction.  The problem then becomes how to codify pedagogical expertise in such a way that
authors can create good instruction in spite of themselves. The following are some approaches
that have been taken to this problem:
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1. Develop instructional-strategy-specific tools. The Goal-Based Scenario Builder, which
is based on Schank’s concept of teaching architectures, is an example of such a tool.
We have already noted that this approach has the advantages of being able to capture
some instructional strategies and being relatively easy to use (just give the system what
it asks for!).  Because the theory behind the use of these tools is still being worked out,
it is difficult to say for sure what the disadvantages are.  However, one potential
disadvantage is that these may become tools in search of appropriate instructional
applications.  It is even possible that an author might use such a tool simply because it
is available and produces neat-looking CBT, at the expense of teaching other important
types of knowledge for which there is no tool available.

2. Develop generic tools. Programmatically, this approach usually takes the form of a
separate module containing generic teaching rules.  GTE and Eon are examples of
systems which utilize separate pedagogical modules.  The advantage is that the
pedagogy in these modules can be easily inspected and revised.  Also, in theory at least,
these modules can be used and reused for many different ITS applications.  The
disadvantage is that sorting through and codifying all potentially relevant pedagogical
expertise is a monumental task, and people may still not agree with the pedagogy
selected in the end.

3. Use built-in teaching strategies.  This approach is used in Electronic Trainer and
XAIDA.  Programmatically, it means that the system traverses the knowledge base to
teach certain knowledge types in specific and predetermined ways.  The advantage is
easier implementation.  Also, if a rich knowledge base is available, it is not difficult to
construct alternative teaching strategies, or even a meta-scheme for choosing among
alternative teaching strategies.  This approach may be less elegant and more application
specific than having a separate pedagogical expertise module, but for now at least, it is
probably more achievable.

It is still possible to build poor instruction with XAIDA, particularly if the author does not
take full advantage of its capabilities, if she does not construct the knowledge base well, or if
she provides deficient instructional materials (names, descriptions, resources, etc.).  However,
we feel these difficulties are surmountable with training and documentation that address these
areas.  We could also do more in terms of implementing different teaching strategies.

Student Interface

The ideal student interface should be authentic, intuitive, and instructionally complete.
Approaches that have been taken include:

1. Simulation. Simulations can provide a realistic, intuitive interface, including realistic
feedback.  Superior packages, such as RIDES, allow the student to experiment with
settings to see what happens.  Simulations, however, can be difficult to develop and
instructionally opaque.

2. Task-based environment.  Goal-Based Scenario Builder provides an environment where
the student is presented with a problem, performs tests to gather information, and
makes a decision based on the available information.  The advantage is the instructional
task has an authentic look and feel.  The disadvantage is that such tools often do not
teach other potentially relevant information, such as enabling or nice-to-know
knowledge.  Also, there does not appear to be a provision for changing the instructional
approach or information if the student has a problem.

3. Traditional CBT.  XAIDA’s learning environment is neither task-authentic nor flashy.
However, we have attempted to provide the right types of information, and the ability to
access that information easily at any time.  The sequence in which information is
initially presented to the student is modeled roughly after the sequence in which
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information is presented in a typical classroom.  The operation of the interface is
designed to be as obvious as possible.

Based on testing, we have redesigned the student interface once and have not had any
problems since.  Students can learn with it.

Developer Interface

The developer interface should allow an author to design effective instruction in a minimal
amount of time.  There are two underlying issues to worry about in constructing this interface.
The first is that it should help the author to develop an attractive and effective screen layout for
the student.  The second is that it should acquire the needed domain knowledge. Approaches to
these issues include the following:

1. Student interface is minimally configurable. This is the approach used in XAIDA, the
Electronic Trainer, Goal-Based Scenario Builder, and MITT Writer.  The author
essentially fills in pre-determined blank spaces.  The advantage is that the author no
longer has to worry about screen design issues.  The disadvantage is that authors will
sometimes insert information which “looks funny” in the one-size-fits-all format.

2. Student interface is highly configurable. This approach is used in Eon and RIDES.
RIDES has an easier task, because it is only used to design simulations.  The advantage
is that the author has more control.  The disadvantage is that novice authors may have
more control than they should have.

3. Forms-based development interface. This approach is used in MITT Writer, the
Electronic Trainer, and Goal-Based Scenario Builder.  The advantage is that the
developer can be told exactly what to put in.  The disadvantage in some cases is that
she may not know why she is putting something in or where it is going to appear until
she opens some other program to view the lesson.

4. Icon-based development interface. This approach is used in Eon, and resembles that
used in commercial authoring software such as Authorware and Icon Author.  The
advantage is that the author can get a big picture of the flow of the lesson.  The
disadvantage is that as with a forms-based interface, she often has to run some other
program to actually see what the student sees.

5. Object-based development interface. This approach is used in RIDES.  For simulation
development, this is a good approach. Nonetheless, our experience with RIDES and a
number of other simulation development systems is that the effort and expertise
required to develop simulations are very steep functions of the simulation’s
sophistication.

6. WYSIWYG development interface. This approach, in combination with a few forms, is
used in XAIDA.  The advantage is that the author sees what the student sees as she
authors it.  The disadvantage, for knowledge representation purposes, is that novice
authors sometimes fail to concentrate on building the knowledge structure, and instead
get distracted by all the other tasks they need to perform to make a complete lesson.
Future versions of XAIDA may incorporate a combination approach in which the
author is first prompted (in a wizard-like fashion) to provide the basic components of
the knowledge structure; and later views and edits the lesson using the WYSIWYG
interface.

Opportunities for Enhancement of XAIDA

The version of XAIDA described in this paper, although useful for many purposes, is an interim
version. A complete picture of the system can only be had with an understanding of the
capabilities that could not be accommodated in this version. This last section describes our
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ideas for enhancements. Some of these ideas may be incorporated into future versions. Most
will fall by the wayside either because of resource limitations or because they prove to be less
than useful upon closer scrutiny.

We see opportunities for enhancements in three main areas: in knowledge representation,
in increased flexibility in instructional strategy, and in the use of simulation.

The knowledge representations employed in the current versions of the shells are
impoverished in many ways. The Physical Characteristics shell, for example, does not take
advantage of natural constraints on many relationships such as one-one mappings. More
importantly, no provision is made for instruction on the taxonomic structure of devices. Future
versions should incorporate knowledge of class structure. We also recognize the many
limitations of our current causal reasoning scheme for teaching theory of operation. We hope in
future versions to introduce more flexibility into this scheme by providing for more complex
rules and for sequential effects.

We are uncomfortable with the pattern of interaction in the Physical Characteristics shell,
since it is characterized by long periods of presentation followed by equally long or longer
periods of practice. Future versions should implement an approach in which presentation and
practice exercises are intermingled in a dynamic and adaptive fashion.  We have already begun
to explore some of our ideas in this regard in the newer shells, such as Procedures.

We also see the need to explore alternative curriculum models. The model used in Version
5 is based on the part structure of the system and is driven by the Physical Characteristics shell.
Alternative curriculum models could be based on knowledge structures employed by the other
three shells.

Equipment simulation is a central issue for us. It is difficult to conceive of effective
computer-based maintenance training that does not somehow provide access to a simulation of
the equipment under instruction. One way of dealing with this problem is to replace the static
graphic backgrounds employed in Version 5 with active simulations of the equipment.
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Footnotes

1. It should be noted that a developer who is familiar with RIDES authoring language
could add an adaptive exercise capability (see Horwitz, Shute, and Fleming, 1997).  But
our main point is that XAIDA, unlike RIDES and other simulation-based systems,
automatically generates adaptive practice on physical characteristics.

2. It is interesting to note, by the way, that although instructors often mention this type of
information during instruction, they seldom test it.  It is as if they believe such
information is useful for learning and recalling the procedure, but not important enough
to assess.  XAIDA does administer practice on this type of knowledge, however.

3. The current prototype implements three question types embedded in presentation. The
other types and contexts are not supported at this time.

4. In practice, a system can be multiply faulted, but troubleshooting training almost
universally restricts its training to single-fault cases. XAIDA adheres to this single-fault
constraint.

5. In real aircraft, air is also required.
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Appendix 1. Studies of Students

Study Wenzel, Richardson, & Gibson (1996)

Lesson Topic C-141 crew oxygen system XAIDA Version 5.04

Issues Investigated Gains in declarative knowledge and changes in knowledge organization and structure
resulting from an XAIDA lesson.  Also, instructional effects of practice.

Participants 11 high school seniors

Data Written performance test scores and Pathfinder.

Findings Significant 217% score increase post instructional presentation.  Near significant 27%
score increase post practice.  No relationship found between students’ Pathfinder networks
as compared to C-141 maintenance instructor/expert.  No change in students’ Pathfinder
networks as a result of XAIDA lesson.

Study Richardson, Wenzel, Halff, & Gibson (1996)

Lesson Topic C-141 crew oxygen system and bleed air system (2
lessons)

XAIDA Version 5.04

Issues Investigated Comparison on written test with untrained controls. Changes in Pathfinder patterns as the
result of training as a function of lesson content and presence of advance organizer.

Participants 71 undergraduate students

Data Written performance test scores and Pathfinder (pre and post)

Findings Significant 52% gain in performance over untrained controls. No consistent indications of
training effects on Pathfinder measures.

Study Wenzel, Richardson, & Gibson (1996)

Lesson Topic C-141 crew oxygen system XAIDA Version 5.04

Issues Investigated Gains in declarative knowledge and changes in knowledge organization and structure
resulting from an XAIDA lesson (no control group)

Participants 11 USAF C-141 maintenance trainees

Data Written performance test scores and Pathfinder (pre and post)

Findings Significant 73% test score increase.  Correlations between student and expert 1) Pathfinder
networks and 2) relatedness ratings before and after lesson increased.
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Study Wenzel, Richardson, & Gibson (1996)

Lesson Topic Anatomy of the auditory system XAIDA Version 5.04

Issues Investigated Gains in declarative knowledge and changes in knowledge organization and structure
resulting from an XAIDA lesson (no control group)

Participants 7 university introductory psychology students

Data Written performance test scores and Pathfinder (pre and post)

Findings Significant 526% test score increase.  Correlations between student and expert 1)
Pathfinder networks and 2) relatedness ratings before and after lesson increased.

Study Wenzel, Dirnberger, Fox, Hearne, Licklider, Keeney, Reyna, Roberts, Strebeck, & Halff
(1997)

Lesson Topic Parabolas and Quadratic Equations XAIDA Version 5.1a

Issues Investigated Lesson effectiveness (no control group)

Participants 9 community college algebra students

Data Written performance test scores (pre and post)

Findings Significant score increase of 56%

Study Wenzel, Dirnberger, Fox, Hearne, Licklider, Keeney, Reyna, Roberts, Strebeck, & Halff
(1997)

Lesson Topic Personal computer motherboard XAIDA Version 5.1a

Issues Investigated Effectiveness of learning in dyads vs. as individuals

Participants 21 community college computer hardware students

Data Written performance test scores (pre and post); self-rating of parabola knowledge; opinion
survey

Findings Significant score increase of 167% in both treatments; no difference in performance
between pairs and individuals

Study Wenzel, Dirnberger, Fox, Hearne, Licklider, Keeney, Reyna, Roberts, Strebeck, & Halff
(1997)

Lesson Topic Drillwell recirculation system XAIDA Version 5.1a

Issues Investigated Effectiveness of XAIDA vs. lecture

Participants 24 continuing education students

Data Knowledge tests; knowledge self-ratings; computer comfort ratings

Findings Significant increases in performance test (47%), knowledge self-ratings, and computer
comfort ratings. No differences between XAIDA and lecture conditions.
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Study Wenzel, Dirnberger, Fox, Hearne, Licklider, Keeney, Reyna, Roberts, Strebeck, & Halff
(1997)

Lesson Topic Oxyacetylene welding equipment XAIDA Version 5.1a

Issues Investigated Lesson effectiveness (no control group)

Participants 10 community college pipe-fitting students

Data Written performance test scores (pre and post); lesson evaluation questionnaire

Findings Significant 113% score increase on performance test; overall very positive response to the
lesson itself.

Study Wenzel, Dirnberger, Fox, Hearne, Licklider, Keeney, Reyna, Roberts, Strebeck, & Halff
(1997)

Lesson Topic Computer keyboard XAIDA Version 5.06

Issues Investigated Lesson effectiveness; control group engaged in non-relevant activity

Participants 16 community college microcomputer students

Data Written performance test and reaction time measure

Findings XAIDA lesson group scored significantly higher on written test than control group and had
significant 104% score increase; control group had no significant score increase.  XAIDA
group also on average slightly faster and more accurate than control group on reaction time
test.

Study Wenzel, Dirnberger, Fox, Hearne, Licklider, Keeney, Reyna, Roberts, Strebeck, & Halff
(1997)

Lesson Topic Computer literacy XAIDA Version 5.1a

Issues Investigated Instructional effectiveness of audio in courseware.  Compared audio with text, audio-only,
and text only.

Participants 32 community college computer-literacy students

Data Written performance test scores; learning activities and instructional methods preference
surveys

Findings Significant score increase of 47% in all treatments; text-audio combination was superior to
text alone and audio alone. The last two were equally effective.
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Study Casaus, Gibson, Wenzel, & Halff (1997)

Lesson Topic The brain XAIDA Version 5.1a

Issues Investigated Comparison of adaptive and non-adaptive practice (yoked control group)

Participants 20 undergraduate psychology students

Data Multiple-choice performance measures administered at three points in time:  pre-lesson;
post-lesson, pre-practice; and post-practice.

Findings Significant score increases from pre-lesson to post-practice for both groups.  No increase
in score due to adaptive practice.

Study Casaus, Gibson, Wenzel, & Halff (1997)

Lesson Topic The brain XAIDA Version 5.1a

Issues Investigated Comparison of adaptive and non-adaptive practice (yoked control group)

Participants 12 undergraduate psychology students

Data Multiple-choice performance measures administered at three times:  pre-lesson; post-
lesson, pre-practice; and post-practice.

Findings Significant score increase in both groups from pre-lesson to post-practice.  Adaptive group
scored significantly higher than non-adaptive group (p<.001).  Some, but not statistically
significant, increase in score due to adaptive practice.

Study Wenzel & Ellis (1997)

Lesson Topic National Emergency Response Guidebook XAIDA Version 5.1b

Issues Investigated Instructional effects on knowledge and performance of physical characteristics and theory
of operation training

Participants 53 USAF military and civilian medical personnel

Data Written tests and timed performance tests taken throughout training

Findings Significant 366% gain on written tests. Significant gains in time and accuracy on timed
performance tests.
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Appendix 2. Studies of Developers

Users XAIDA
version

Lesson topics Data
gathe
reda

8 USAF military and civilian
personnel, various specialties
(Brooks AFB)

5.04 Nerve cell; hydraulic system A, B,
C, D,
E, F

25 USAF military and civilian
personnel, primarily aircraft
maintenance  (362nd TTS,
Sheppard AFB)

5.04 F-16 egress system; munitions; time
compliance technical order (TCTO)
form; chip detector; winch; speed brake;
hydraulic system; statistical hypothesis;
tools; Core Automated Maintenance
System (CAMS) data hierarchy;
emergency power unit; AF scheduling
form 2407; airframe; flight controls;
weight arm movement; cargo restraint;
basic aerodynamics; engine starting
system; personal computer

A, B,
C, D,
E, F

4 USAF military reserve and
civilian personnel, primarily
paralegals

5.06 Various AF 3070 forms (charge sheet,
non-judicial proceedings, Federal Tort
Claims Act)

A, B,
C

2 USAF military personnel,
various specialties (Travis AFB)

5.1a1 Human body A, C

8 Community college instructors
and support personnel, various
content areas

5.06
(Dev.);
5.1a1
(Del.)

Quadratic equations (parabola);
micrometer; motherboard; keyboard;
personal computer; oxyacetylene
equipment; drill well circulation system

A, B,
C, D,
E, F

7 USAF military and civilian
personnel, primarily in basic
military training (Lackland AFB)

5.1a2 Proper military attire; military customs
and courtesies

A, B

17 USAF military and civilian
medical personnel (383rd TRS,
Sheppard AFB)

5.1a2 Cardiac assessment; EKG machine;
cover of 6-part folder; occupational skill
levels; gastrointestinal endoscope; slint;
soft tissue wounds; surgery tray;
developing plans of instruction; blood
pressure; transportation; medical
terminology; skeletal system; surgical
attire; heart parts; emergency response
guidebook structure and use; IV setup

A, B,
C, D,
E, F

5 National Imaging and Mapping
Agency (NIMA) and Defense
Language Institute (DLI)
personnel

5.1b Map duplication (printing process);
NIMA catalog; parts of speech, F-16
cockpit

A, B,
C, D

aKey:  A = Comments; B = Attitudinal; C = Journal files; D = Behavioral; E = Self-reported
computer skills; F= Self-reported XAIDA skills; G = Self-reported usability/understandability
of XAIDA development features, interfaces, and support materials; H= Knowledge structures
(Pathfinder scores); I = Self-reported organizational factors related to acceptance of new
technology.


