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Erica Melis, Eric Andrès, Jochen Büdenbender, Adrian Frischauf, George Goguadze, Paul
Libbrecht, Martin Pollet, Carsten Ullrich
DFKI Saarbrücken, D-66123 Saarbrücken, Germany

Abstract. ActiveMath is a generic web-based learning system that dynamically generates
interactive (mathematical) courses adapted to the student’s goals, preferences, capabilities, and
knowledge. The content is represented in an semantic xml-based format. For each user, the
appropriate content is retrieved from a knowledge base and the course is generated individually
according to pedagogical rules. Then the course is presented to the user via a standard web-
browser. One of the exceptional features of ActiveMath is its integration of stand-alone
mathematical service systems. This offers the means for exploratory learning, realistically
complex exercises as well as for learning proof methods. The article provides a comprehensive
account of the current version of ActiveMath.

INTRODUCTION

Because of the enormous development and increasing availability of the Internet, web-based
learning systems become more important for long-distance learning, for completing and
complementing the traditional teaching, and for supporting life-long learning. They serve as
centrally available systems that allow a user to learn in her own environment and whenever it is
appropriate to her.

Hence, several web-based learning systems have been developed such as the commercial
Learning Spaces2 or Blackboard3. These systems offer fixed multimedia web pages and facilities
for user management and communication but most of them lack support of truly interactive
problem solving and real user-adaptivity. Moreover, they use proprietary knowledge
representation formats rather than a standardized knowledge representation which is
exchangeable between systems. Some user-adaptivity is offered by systems such as ELM-ART
(Weber & Brusilovsky, 2001) and Metalink (Murray, Condit, Shen, Piemonte & Khan, 1999).

Tools for mathematical problem solving have been developed before, e.g., the dynamic
geometry system CabriGeometre (Balacheff, 1993). The academic PACT tutors (Anderson,
Corbett, Koedinger & Pelletier 1995; Corbett, Koedinger, & Anderson 1997] and their
descendents, the cognitive tutors from CarnegieLearning, focus on mathematical problem
solving at school-level in a fixed curriculum and provide predefined feedback and/or simple
dialogs. For instance, Ms.Lindquist4 web-delivers a course for "algebra word problems" which
employs human-like dialogs. However, they do not provide a textbook-like reference or web-
based system to explore different parts of a curriculum and have specific knowledge
representation formats. In particular, representation and (presentation) functionalities are not
separated.

In order to provide problem solving orientation and support but also all the other useful
features, in Saarbrücken - at the DFKI and the University of Saarland - we are developing the

                                                     
1 The project which led to the results presented in this paper was funded by the German
Bundesministerium für Bildung und Forschung. The authors are responsible for the content of this
publication.
2 http://www.ibm.com/mindspan
3 http://www.blackboard.com
4 http://www.algebratutor.org/
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generic, web-based, adaptive, and interactive learning environment ActiveMath. The first area
it is used for is mathematics. In particular, the first on-line course we experimented with in
ActiveMath has been the college level `Algebra Interactive' (Cohen, Cuypers & Sterk, 1999).

ActiveMath is realized as a client-server web-architecture that can be accessed using
standard web-browsers. ActiveMath provides a generic framework that can be filled with
instruction content as well as pedagogical knowledge. Because of its modular design it is easily
configurable with respect to components. Because of the separate representation of pedagogical
knowledge, the system is configurable with pedagogical strategies and therefore a tool for
experimentation on appropriate learning settings.

In a nutshell, notable features of the current version of ActiveMath are user-adapted
content selection, sequencing, and presentation, support of active and explorative learning by
external tools, use of (mathematical) problem solving methods, and re-usability of the encoded
content as well as inter-operability between systems.

This article describes these and other features in more detail. It briefly substantiates why
certain goals have been targeted and realized. It describes the architecture and explains the
components of the distributed system as well as their integration and communication.

PRINCIPLES OF ACTIVEMATH’ DESIGN

To begin with we describe some general principles of the system and briefly discuss them from
a pedagogical and from a technical point of view. In particular, we discuss the need for
explorative problem solving orientation, personalization, for scrutability, as well as for
architectural openness, the separation of knowledge representation and functionality, and the
use of ontologies and standards.

Pedagogical Goals

ActiveMath' design aims at supporting truly interactive, exploratory learning and assumes the
student to be responsible for her learning to some extent. Therefore, a relative freedom for
navigating through a course and for learning choices is given and by default, the user model is
scrutable (see Kay00), i.e., inspectable and modifyable.

Adaptivity

Most previous intelligent tutor systems did not rely on an adaptive choice of content. A reason
might be that the envisioned use was mostly in schools, where traditionally every student learns
the same concepts for the same use. In colleges and universities, however, the same subject is
already taught differently for different groups of users and in different contexts, e.g., statistics
has to be taught differently for students of mathematics, economy, and medicine. Therefore, the
adaptive choice of content to be presented as well as examples and exercises is pivotal.

Moreover, web-based systems can be used in several learning contexts, e.g., long-distance
learning, homework, and teacher-assisted learning. Personalization is required in all of them
because even within teacher-assisted learning in a computer-free classroom with 30 students and
one teacher truly individualized learning cannot be realized. ActiveMath's current version
provides adaptive content, adaptive presentation features, and adaptive appearance. Each user
can take public and private personalized notes as well.

Exploration and Use of Mathematical Services

During the last decades the mathematics pedagogy community recognized that students learn
mathematics more effectively, if the traditional rote learning of formulas and procedures is
supplemented with the possibility to explore a broad range of problems and problem situations
(Schoenfeld, 1990). In particular, the international comparative study of mathematics teaching,
TIMSS (Baumert, 1997), has shown (1) that teaching with an orientation towards active
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problem solving yields better learning results in the sense that the acquired knowledge is more
readily available and applicable especially in new contexts and (2) that a reflection about the
problem solving activities and methods yields a deeper understanding and better performance.
Therefore, ActiveMath is designed to offer not only multiple choice questions but also more
interactive kinds of exercises.

In these exercises, ActiveMath does not guide the user strictly along a predefined expert
solution. It can, however, support the student: The integrated mathematical services can provide
feedback on the user’s activities. In particular, they can check the correctness of her solution.
Moreover, the integrated mathematical services, e.g. Computer Algebra Systems (CAS) or
calculators, can support the user by automated problem solving. That is, they can take over
certain parts in problem solving and thereby help the user to focus on certain learning tasks and
to delegate routine tasks. The use of CAS, function plotters, geometry systems etc. has been
demanded since long and has partly been realized with stand-alone tools. Those tools make
realistic and complex problems an achievable topic for a lesson and allow the students to train
fundamental capabilities and skills such as mathematical modeling for realistic problems.

Conveying Proof Planning Knowledge

We believe that teaching mathematical methods and know-how and know-when has to be
introduced into mathematics teaching, apart from the traditional axioms, theorems, and
procedures. Indeed, first experiments (Melis, Glasmacher, Ullrich & Gerjets, 2001) suggest that
instruction materials based on descriptions of mathematics methods yield a better subsequent
problem solving performance than traditional (textbook like) instruction material.

Technical Goals

In order to use the potential power of existing web-based systems they need an open
architecture to integrate and connect to new components including student management,
assessment, collaboration tools, problem solving tools, and dialog system. ActiveMath has an
open client-server architecture whose client can be restricted to a browser. This architecture
serves not only the openness but also the platform independence which is desirable and
important. Moreover, the components of ActiveMath have been deliberately designed in a
modular way in order to guarantee exchangeability and robustness.

Building quality hypermedia content is a time-consuming process, hence the content should
be reusable in different contexts. However, most today’s interactive textbooks consist of a
collection of predefined documents, typically canned pages and multimedia animations. This
situation makes a reuse in other contexts and a re-combination of the encoded knowledge
impossible and inhibits a radical adaption of course presentation and content to the user’s needs.
ActiveMath’ knowledge representation contributes to re-usability and interoperability. In
particular, it is compliant with the emerging knowledge representation and communication
standards such as Dublin Core, OpenMath, MathML, LOM5. This will ensure a long-term
employment of the new technologies in browsers etc. The knowledge representation used by
ActiveMath is detailed in section 4. Some of the buzzwords here are meta data, ontological
XML for mathematics, and standardized content packaging.

HOW DOES ACTIVEMATH WORK

Before we go into details of the system we want to describe how ActiveMath appears for a user
and what the architecture and components are behind this appearance. Let’s briefly explain
ActiveMath’s functionalities with an example.

                                                     
5 http://ltsc.ieee.org/wg12/



Melis, Andrès, Büdenbender, Frischauf, Goguadze, Libbrecht, Pollet and Ullrich

388

A User’s View

Eva, a student of mathematics, wants to learn everything needed to understand group
morphisms. She logs on to ActiveMath. As this is the first time, Eva is using ActiveMath, she
has to fill a registration form (see Figure 1). where she specifies personal preferences (e.g., field,
colorful/grey presentation, preferred language...).

Figure 1. The registration page of ActiveMath

Moreover, she can self-assess her mastery of concepts in the overall course in the
hierarchically structured content list shown at the bottom of Figure 1). Then, the main menu is
presented to Eva. She chooses her learning scenario and learning goals for that session. (in a
school context, a teacher could have chosen scenario and goals). Say, she decides to request a
`guided tour' scenario with the goal concept 'morphism'. The required course material (`book') is
generated at once. This `book' can be a full course or just the part of a bigger course that teaches
today's topic. In another session, she may require another 'book', e.g., the part devoted to the
next lesson in school. Eva can also require a predefined 'book'. Each 'book' is a hierarchical
structure of pages whose table of content is annotated by colors indicating the user's mastery
level. Figure 2 shows a screen shot of a 'book'. On the left hand side of the screen a table of
content is displayed. The user can navigate via the linked table of content or next/previous
buttons at the bottom of each page.
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Figure 2: A screen shot of an ActiveMath session

Eva can now browse the book, take notes, look up concepts in a dictionary, work on
multiple-choice-questions, and solve exercises by using mathematical systems, e.g., a CAS.

If Eva wants to investigate one of the concepts in the book, she clicks on its occurrence and
obtains in a dictionary window (see Figure 3) the course element defining the concept as well as
related concepts together with the relations. This way she may learn a larger, more holistic view
of the content.

Figure 3. A screen shot of the dictionary
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When the user Bert logs on, he may fill the questionnaire differently and may ask for other
goal concepts and scenario. If he did not choose the same predefined book as Eva, this user
receives another personalized course (see Figure 4) also with other examples and exercises.

Figure 4. A screen shot of Bert's document

Realization

Now we explain in a bird's eye view how the course generation is realized and which
components carry out which task. In what follows, we refer to Figure 5 which gives an overview
over the ActiveMath components and their communication.

When a user logs on to ActiveMath, the browser connects to the web server which
functions as the bridge between the client's browser and the ActiveMath system. The requests
from the user and responses from the system pass through it. The web server can fulfill some
requests by itself, others are passed to the appropriate ActiveMath components. The web server
contacts the session manager that sends the questionnaire via the web server to the browser. The
information provided via the questionnaire is used to initialize and create a user model.

When the user has chosen her goal concepts and scenario, the session manager sends this
request to the course generator. The course generator is responsible for choosing and arranging
the content to be learned. The course generator contacts the mathematical knowledge base,
MBase (Franke & Kohlhase, 2000), in order to calculate which mathematical concepts are
required for understanding the goal concepts, checks the user model in order to find out about
the user's prior knowledge and preferences, and uses pedagogical rules to select, annotate, and
arrange the content - including examples and exercises - in a way that is suitable for the user.
The resulting linearized instructional graph, a list of IDs of MBase-items, is sent to the session
manager. From MBase the session manager retrieves the actual mathematical content
corresponding to the IDs. This content is represented in an xml-format for encoding
mathematics. Eventually, the session manager sends the xml-content to a filter that transforms
the xml-data to -pages which are then presented via the user's browser.

Besides the dynamic generation of a book, ActiveMath offers predefined courses, i.e.,
courses whose content is predetermined by some author or teacher. Both, the predefined and the
dynamically created course are presented to the user as a book which is a hierarchy of pages.
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The user’s actions are analyzed by (currently very simple) evaluators that calculate updates
of the user model. When the user logs out, her modified user model is stored.

The dictionary facility is based on the semantic information of the knowledge
representation. The presentation filter introduces links between a concept in the book and its
semantic representation in the knowledge base. From this information, a dictionary page is
generated dynamically.

Figure 5. Architecture of ActiveMath

THE KNOWLEDGE REPRESENTATION

As opposed to other interactive textbooks which use a collection of -pages (Cohen, Cuypers &
Sterk, 1999) or LATEX-units (Dahn & Wolters, 2000) ActiveMath uses a semantic xml-based
representation of mathematical knowledge, an extension of OMDoc (Kohlhase 2001, Kohlhase,
2000).

In ActiveMath the knowledge representation is separated from the system’s (presentational)
functionalities. This separation is a key for the multiple use of the same knowledge
representation in different contexts, for reusing and combining knowledge from different
sources, and for managing knowledge with different systems and for different functionalities.

Abstractly, the knowledge representation of the course content is a standardized semantic
xml expressing objects and their relations as well as meta data. This is stored in a data base.
Moreover, pedagogical knowledge is formalized in so-called pedagogical rules.

In ActiveMath, the content representation consist of items. These objects are either
concepts or additional items. A course is organized around concepts, i.e., definitions, axioms,
assertions (theorems, lemmas, conjectures), proof methods, algorithms. Additional items related
to concepts are, e.g., example, exercise, elaboration, motivation, introduction for a concept.
ActiveMath represents several kinds of relations between concepts (mathematical dependency,
pedagogical prerequisites, references) and between concepts and related items such as for
(example for a concept, exercise for a concept, motivation for a concept, proof for an assertion).
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The concepts, related items, and their relations provide a generic mathematical ontology that
can be used and is actually used by different systems managing mathematical knowledge.

More concretely, our knowledge representation OMDoc is an extension of the OpenMath
standard (Caprotti, 1998). OpenMath is a semantic xml-based markup language and a general
framework for encoding mathematical objects. OpenMath exclusively deals with the
representation of the mathematical objects rather than with mathematical documents which may
have a complex structure of their own and need additional information such as structures and
copyright. Therefore, OpenMath needed several extensions that are realized in OMDoc. Since
educational systems need additional pedagogical information we extended the core OMDoc by
pedagogical and structural elements such as types of exercises and difficulty of examples and
exercises.

OMDoc encodes mathematical objects and facts such as definitions, theorems/assertions,
proofs, examples, exercises as well as omtext (remarks, motivations) in an OMDoc document.
We refer to all the entities of a document as OMDoc items. More specifically, axioms,
definitions, theorems/assertions, structures, and proof methods are concepts. Every item has an
ID. OMDoc items consist of elements characterizing this item, e.g., attributes, types, etc.

Figure 6 shows an OMDoc representation of a definition of a monoid. The basic items are
symbols, that denote basic mathematical entities. For instance, in the figure the symbol for an
ordered-pair, for a unit, etc occur. A symbols points to OpenMath object in a so-called content
dictionary (cd), e.g., OMS cd="logic1"..., where logic1 denotes a standard OpenMath content
dictionary. The symbols are the simplest items carrying a mathematical meaning. A formula is
built from symbols in an OMOBJ element.

Every item can include a natural language formulation as well as formal (OpenMath)
objects. In the figure, the CMP (commented mathematical property) element contains the
natural language formulation of the definition. It includes OpenMath representations for the
objects, e.g., ordered-triple, times, unit, etc. The FMP (formal mathematical property) contains
an OpenMath object (a formula), that formalizes the content of the CMP. In the example, the
FMP encodes the following logical formula:

This means, that the triple  is a monoid if and only if the couple  is a
semigroup and  is a unit w.r.t. the operation . Formal objects in OMDoc are necessary to
provide a formal input for the external problem solving systems, e.g. for a CAS or for a proof
planner.

OMDoc allows the annotation of items and documents with meta data and - for some items
- with attributes such as type and for. The meta data scheme of OMDoc is compliant to the DC
meta data scheme and includes contributor, Creator, translator, subject, title, description,
publisher, date, type, format, identifier, source, language, relation, coverage, and rights. These
metadata elements are not mandatory. For the specific needs in ActiveMath, we extended the
OMDoc meta data scheme. Currently, the additional metadata elements are depends-on,
difficulty, abstractness, and field.

Depends-on contains references to the symbols for all objects that are mentioned in the
exercise. Field specifies from which field the content of the item comes. The meta data
difficulty and abstractness are still problematic because they have no unique values and thus
depend a priori on the author's view. Among others, Figure 6 illustrates the depends-on in the
html metadata element that defines dependencies on other concepts. Html depends-on is a
relation which is employed by the course generator, as we shall see later.

The relatively verbose, semantic representation buys several clear advantages over - or
other purely syntactic representations such as LATEX, among others,

•  it provides an ontology for the content of the course which is indispensable for a reuse
of teaching and learning material and for a combination of materials for different
purposes.

•  It allows for an adaptive presentation which has not to be determined (in advance) in the
knowledge representation.
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•  The presentation formats are pretty flexible rather than restricted to . The OMDoc
representation and current technology allow not only for rendering -pages but also other
presentation formats such as DVI, SVG, or Flash that can be used, e.g., for high quality
printing.

•  The meta data annotations needed for learning systems are compliant with standard
developments.

Figure 6. A definition of a monoid in OMDoc representation
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ADAPTIVE PRESENTATION

Every learner is different, and even the same learner will have different goals in different
sessions. Therefore, the ActiveMath system offers dynamically constructed courses that suit the
learners goals, preferences, and knowledge.

The presentation tools of ActiveMath include a course generator and pedagogical rules
employed by the course generator as well as the session manager and presentation filters.

Course Generator

The process of course construction takes different kinds of information into account:

•  The goal concepts the user wants to learn. Currently, a learning goal is a concept
contained in the knowledge base rather than abstract or pedagogical goals such as
improving dependency knowledge.

•  The scenario the user chooses. Currently, ActiveMath offers presentation generation for
six scenarios: exam, examPreparation, overview, detailedOverview, guidedTour, and
detailedGuidedTour.

•  The user's knowledge mastery and action history.

•  The user's capabilities to work with one of the external systems integrated into
ActiveMath.

•  Pedagogical rules. The course generator employs pedagogical rules to determine, when
which items should be presented and in which order.

The course generator realizes the following steps.

1. Starting from the goal concepts chosen by the user (or by a teacher), all concepts they
depend upon are collected recursively. This process uses the depends-on meta data
information contained in the OMDoc representation. The result is a collection of all
concepts that need to be known by the learner in order to be able to understand the goal
concepts.

2. The second step collects all additional items for the concepts, such as examples.
exercises, and elaboration texts.

3. In a third step, pedagogical information represented by pedagogical rules is applied
which take information from the user model into account. The rules are used to select
and structure the gathered collection of content into an instructional graph. This process
is detailed in the next paragraph. For example, in examPreparation definitions,
assertions, methods, and exercises will be presented only, whereas in the guidedTour
scenario ActiveMath presents examples and motivations in addition.

Moreover, since employing an external system when working on exercises and examples
requires a certain minimal familiarity with the systems, ActiveMath presents those exercises
only, if the capability is confirmed. In addition, pedagogical information may restrict the
available features of an external system. For instance, a student learning about mathematical
integration and derivation should not use a CAS to solve his exercises completely, whereas
using the CAS as a calculator for auxiliary calculation is acceptable.

4. Finally, the pages are ordered and put into a hierarchy.

The result of the generation is a linearized collection of IDs adapted to the user's needs,
preferences, and knowledge that can be transformed to -pages
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Pedagogical Rules

The pedagogical rules provide the backbone for the configurability of ActiveMath. Currently,
they contain some know-how on which content to present, how to present the content in a user-
adapted way, and under which conditions which service systems should be available. So far, this
know-how is obvious and simple enough. It is, of course, subject of future research for which
we invite other groups to contribute and use ActiveMath as a tool for experimentation .

In the third step of the course generation pedagogical rules are employed to decide

•  which additional information should be presented along with a concept,

•  which exercises and examples should be presented,

•  whether or not to include exercises and examples that make use of a particular external
system,

•  in which order the information should appear on a page.

For the evaluation of the rules ActiveMath uses Jess (Friedman-Hill, 1997), an expert
system shell. In this process, information requested from the user model and the collected IDs of
OMDoc items (annotated with the user’s knowledge mastery levels) are entered as facts into the
JESS knowledge base. Then the rules are evaluated and generate a collection of items to be
presented.

The left hand side of a rule specifies the conditions that have to be fulfilled for the rule to
fire and the right hand side specifies the actions to be taken when the rule fires. In the following,
we provide examples of pedagogical rules for two different types of decisions,6 where a variable
is distinguished by a leading question mark.

Figure 7 shows a rule that fires, if the scenario guidedTour is chosen. In this case, the rules
checks whether there exists a fact html(scenario detailedGuidedTour) in the knowledge base of
Jess. On the right hand side the action of asserting the items (proofs) ... (exercises) are specified,
i.e., these facts are added to JESS’ knowledge base which means that the corresponding OMDoc
items will be presented, if available. The last action (order motivations … elaborations)
specifies the order in which the items will appear on each page.

Figure 7. A pedagogical rule for determining a pattern for the detailedGuidedTour scenario

Figure 8 shows a pedagogical rule selecting the content for the examPreparation scenario.
Compared with a guided tour, only a subset of the available items will be presented.

                                                     
6 The rules are a bit simplified for better readability.



Melis, Andrès, Büdenbender, Frischauf, Goguadze, Libbrecht, Pollet and Ullrich

396

Figure 8. A rule determining the pattern for the examPreparation scenario

Figure 9 shows an example for a rule that chooses exercises with an appropriate difficulty
level. If exercises should be presented at all (indicated by (exercises)), and if there exists a
definition in the knowledge base of Jess, then d's name is bound to the variable ?definition and
the user's knowledge of d is bound to ?user-knowledge. Jess allows to specify Boolean functions
(indicated by test) whose value determines whether a rules fires or not. That is, the rule in the
figure fires, if the user's knowledge is less than 0.3. In this case, facts are inserted into JESS'
knowledge base which in turn trigger the selection of examples for d with difficult levels 0.3,
0.3, 0.5, and 0.7 for the presentation.

Figure 9. A rule choosing number and difficulty of exercises

The application of the pedagogical rules transforms the heap of IDs that is gathered in the
first phase of the course generation to a sorted and grouped selection of material that can be
passed to the session manager.

The examples illustrates how nicely the rules can be used to configure ActiveMath. For
instance, for a German teaching style the definition and theorems might be presented before the
examples, whereas for an American teaching style the examples come first.

Session Management and Presentation

Essentially, the session manager has two main functionalities. The first is the actual realization
of the presentation. The second is to store and reload shorthands of documents for resuming a
course.

The actual presentation preparation is realized by servlets contained in the session
manager, e.g., a servlet calling the course generator for scenario XY. The servlets use URL
parameters to react to a web server request and deliver part of a session. These parameters
include the name of the user and session in a human readable form.

Currently ActiveMath offers no security and pages of anyone can be read freely even
though there is a login mechanism. The simplicity of the request syntax, however, enables a
tunneling of them, that means to serve all requests (including exercise proxy-messages, see
Section 7) through a single TCP/IP port, thereby allowing access from behind the strongest
firewall. This same tunnelling will be used to secure the connections from the client to the
server using the secure HTTP protocol.

For every user, each new `book' she opens creates a new session. In order to allow for a
return to the same document after a logout, a session state has to be referred to. The information
stored about a session has to be sufficient for the return. Therefore, hooked to a session, the
following information is stored:
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•  references to mathematical systems to allow the restart of the exercise in case of a
connection failure,

•  the linearized instruction graph with page separation to allow the presentation of pages
at request,

•  names of user and session (for URLs), goals and scenario-name

Content Presentation

Lets go into more detail of the actual presentation preparation which starts with a list of OMDoc
IDs. A servlet processes the list, i.e., it fetches OMDoc items from MBase and replaces the IDs
by the actual OMDoc content. In particular, the textual content, the CMP, is extracted from
MBase and inserted in place of the ID. The resulting big OMDoc is then rendered for the
browser through a series of transformations7 described in the following.

The transformations are produced by several xslt stylesheets8: (1) the official stylesheet
converting OMDoc to , (2) a stylesheet for transforming mathematical object references to
mathematical symbols and (3) the ActiveMath-specific stylesheets for adding features and user-
adaptation (for user-adaptive display, appropriate URLs for interactivity, etc.).

The presentation of mathematical symbols is adapted to the user’s and possibly to a
teacher’s preference. For instance the monoid from Figure 6 can be presented symbolically as

 but also as  .
An ActiveMath-specific transformation enriches the OMDoc representation with dynamic

information leading to widget-like features in the final display of the pages. One feature is the
adaptive annotation of the table-of-content entries. The color of a bullet indicates the current
average mastery level of the entry which is computed from the mastery values of the
underlying/included concepts which are retrieved from the user model. Other planned features
are a drag-and-drop facility of mathematical expressions (currently symbols only) and a note
facility that allows to annotate the OMDoc items with private or public notes. Furthermore,
depending on the configuration of the presentation, a referencing mechanism can take an
OpenMath object and produce a hyper-link from it. Similarly, an explicit ref element can be
presented as a hyper-link.

Then xslt stylesheets convert the enhanced OMDoc-pages to . This includes stylesheets
used to adapt the -appearance to the user’s preferences and to the chosen scenario. Similarly, the
presentation of slides needs stylesheets that differ from the stylesheet for a typical book. The
last transformation adjusts URLs so that they contain all the session and user information.

Figure 10. Two different presentations of the same content

                                                     
7 These transformations are also called filters.
8 http://www.w3.org/Style/XSL/
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Finally, css stylesheets (Bos, Lie, Lilley & Jacobs 1998) determine the general layout, e.g,
color, font size, and graphical icons that indicate the type of a paragraph, i.e., indicate whether it
is a definition, example, etc. Currently, we have designed two stylesheets, one for a colorful
style and the other for a grey style, whose differences can be observed in Figure 10.

Symbol Rendering

The rendering of mathematical symbols and expressions is a general problem for browser
delivery in web-based systems. In the past, each mathematical expression had to be presented by
a a specific picture. The problem is not totally resolved yet but the OMDoc representation
allows for an essential improvement, namely the separation of the presentation from the
elements themselves.

Presentation tags for rendering mathematical symbols are contained in OMDoc files. They
provide an xslt template that describes, in a parametric fashion, how to produce for the given
symbol. The xslt engine is responsible for picking the proper presentation. The browser renders
symbols from tags. Currently, we use Unicode for symbol rendering. The rendering and layout
is still highly dependent on the browser installation and font availability and thus the resulting
presentations differ for different browsers.

Presentation tags can also exist for any other output target. For example LATEX output is
under work together with a serving mechanism of the resulting layout to a vector graphics
format. MathML is also considered.

It is important to note that the presentation tags are separated from the elements
themselves. Thus it is a relatively easy task to adapt the presentation to another setting or other
tastes. Thus ActiveMath achieves the principle of separation of content and presentation.

USER MODELING

As ActiveMath' presentation is user-adaptive, it needs to incorporate persistent information
about the user as well as a representation of the user's learning progress. That is, `static' (wrt. the
current session) properties such as field, scenario, goal concepts, and preferences as well as the
`dynamic' properties such as the knowledge mastery values for concepts and the user's actual
behavior, have to be stored in the user model. These different kinds of information are stored
separately and hence, the user model consists of the components history and static and dynamic
profile.

The profile is initialized with the user's entries submitted to ActiveMath' registration page
which describe the preferences (static), scenario, goals (static for the current session), and self-
assessment values for knowledge, comprehension, and application of concepts (dynamic).

How is this information used for adapting the course document? For instance, the `field'
property plays an important role for adapting the content and presentation to users who study a
topic for the application in different fields. For instance, statistics can be taught differently for
mathematicians, computer scientists, biologists, economists, psychologists and certainly with
different examples and exercises. Currently, such a diverse statistics course is being prepared.
The 'goals' and the 'scenario' essentially determine the items included into the presentation and
'preferences' determines the appearance of the generated document. Currently, the choice of
presentation preferences is still pretty simplistic (colorful and grey) but future experiments will
provide psychological and instructional evidence for different presentation configurations and
appearances that are supportive for different groups of learners.

Currently, the history information is used for the course generation and in a suggestion
mechanism. However, this information will as well be valuable for future enhancements of
ActiveMath such as dialog and feedback.
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User Model Components

Since we did not want to commit once and forever to a particular user model technology but
rather be able to experiment with different technologies without having to modify a major part
of the system, we specified the abstract interfaces and can thereby integrate different user model
technologies and updating functionalities. ActiveMath’ distributed architecture supports this
implementation strategy. For instance, the history storage can consist of xml-format files (as in a
previous version) or of a data base (as in the current version). Similarly, we shall experiment
with a table, a data base, and Bayesian Net technology for the concept mastery values.

History

Often, a progress in learning manifests itself not just in tests but in other activities of the user
and certainly achievements such as improved collaboration, self-regulation, self-monitoring, and
other important skills cannot be judged from the success of exercising only (Fosnot, 1996;
Schifter, 1996). Hence, for a more constructivist account of learning it is indispensable to
monitor the user’s activities.

The history component stores information about the actions the user performed. Its
elements, called HistoryAtoms, contain information such as the IDs of the content of a read
page or the ID of an exercise, the reading time, the success rate of the exercise. The
HistoryAtoms are organized in sessions. Presently, the granularity of a HistoryAtom for reading
is the page level because ActiveMath does not yet monitor the user’s more detailed reading
activities. However, a poor man’s eye-tracker is already implemented and this will allow to trace
the user’s attention and reading time at a more detailed level.

Profile

In order to choose and present the content user-adaptively, the user’s preferences have to be
stored. And for adapting the content annotations and computing user-adaptive suggestions,
information about the user’s concept mastery level is required.

To represent the concept mastery assessment, the current (dynamic) profile contains values
for a subset of the competences of Bloom’s mastery taxonomy (Bloom, 1956):

•  Knowledge

•  Comprehension

•  Application.

Figure 11 : An excerpt from the knowledge mastery storage

An entry of the user model is displayed in Figure 11. The user model also stores a
justification for each value, that is, a list of pointers to the HistoryAtoms which were
responsible for changes of the knowledge mastery assessment. This list indicates, among others,
when the changes occurred and why (e.g., whether the changes occurred because the user
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modified the mastery value, because she delivered some solution for an exercise, or because she
read a text).

The example in Figure 11 represents the mastery of the concept with the ID c6s6p3_As2
which the user knows with a likelihood of 30% and which she can apply with a likelihood of
10%. The justification for this assessment is stored in the HistorySteps 5 and 7.

Updating Mechanisms

Finishing an exercise or going to another page triggers an updating of the user model. Since
different types of user actions can reflect and uncover different competencies (of Bloom's
classification) they serve as sources for primarily modifying the values of corresponding
competencies. In particular, reading concepts corresponds to 'knowledge', following examples
corresponds to 'comprehension', and solving exercises corresponds to 'application'. One more
competency, transfer, will be tested in the future corresponding to certain exercises.

When the user model receives the notification that a user has finished reading a page, an
evaluator fetches the list of its items and their types (concept, example, ...) and delivers an
update of the values of those items which depends on the relative reading time. When the user
finishes an exercise, an appropriate evaluator delivers an update of the values of the involved
concepts that depends on the difficulty and on the rating of how successful the solution was with
respect to these concepts.

For user model technologies with a built-in propagation mechanism, the dependencies
between the different competencies as well as dependencies of concepts are used to propagate
the value changes amongst entries of the user model.

The evaluator itself is an easy-to-exchange component. Currently, ActiveMath can be
configured with the following evaluators:

•  an incremental updater

•  a Bayesian updater (Pearl, 1988).

The incremental updater adds fixed values to the user's mastery assessment. In addition, it
applies a function to the incrementation values that takes into account how often the student has
already seen this concept. The Bayesian updater increases or decreases mastery values and in
addition it propagates among the competency values in a way that simulates a simple Bayesian
net. In a Bayesian net user model the propagation will be based on the conditional dependencies
of concepts and of competency values.

USE OF EXTERNAL SYSTEMS

Since ActiveMath is designed to support exploratory learning, problem solving tools are
integrated. In addition to providing the basic facilities for exploring problems, these systems can
be useful because they allow the user to focus on a particular skill to solve a specific problem;
they allow the user to explore a problem interactively; in the context of exercises they can
provide feedback to the user on where it is promising to explore and where dead ends are
reached and they can check the correctness of the user's calculation or derivation and provide
diagnose input for the teacher or for an evaluating function. They can check mathematical truth
even for a terribly awkward input of the user such as .

Several (mathematical) service systems are available, e.g., CAS such as Maple (Char, Fee,
Geddes, Gonnet & Monagan, 1986), Mathematica (Wolfram, 1999), MuPAD (Sorgatz &
Hillebrand, 1995), and the freely available GAP (CAS for group theory) (Schönert, 1995) as
well as statistics software (SPSS), and calculators. These can be used to efficiently solve
computational mathematics problems. Our group has developed another type of mathematical
service system, the prototypical proof planner Omega.

The distributed web-architecture of ActiveMath is well-suited for integrating external
systems and also the generic, semantic knowledge representation by OMDoc is a basis for
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integrating different systems because via translation engines (phrasebooks) these systems can
refer to the standard semantic knowledge representation.

In the following, we concentrate on an abstract description of how exercises with external
systems are specified and realized in ActiveMath and provide concrete examples for the use of a
CAS (Maple) and of the proof planner Omega.

The abstract specification of exercises includes currently:

•  the specification of a problem to be solved by the user

•  three instructions to the external system:

•  a startup containing all the instructions to load libraries, problem data,
variable definitions, and other setups,

•  a shutdown instruction,

•  eval instruction to detect success or failure. eval evaluates the user’s
interaction and returns a success rate (number between 0 and 1) to the proxy
and possibly remarks to the user.

What is technically going on when the user chooses to solve an exercise? An user interface
is started on the client side. At the server side the external system is started and a proxy is
started on the servlet server. This proxy is the central server side object for the exercise. It lives
in the servlets’ virtual machine that is built for each new exercise and for each user. It serves as
a bridge between the user interface and the external system. It reports start and end to the user
model and it can receive monitoring queries and instructions.

CAS Exercises

Rather than implementing new input editors for every CAS, the current version of ActiveMath
offers a classical console, as shown in Figure 12, which requires an input in the language of the
given system. This approach relies on the popularity of the CAS and/or on the objective to learn
the CAS-language in the course.

Figure 12: A simple Maple exercise
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We have implemented some CAS-exercises with the Maple and MuPAD systems. They
ask the user to perform a computation and return the result through a variable whose name is
fixed in advance. That is, the problem specified by an exercise is the definition of a variable and
the task is to compute and bind the computation result to the variable.

The eval instruction is executed after each user input and returns an advise. Since the CAS
functionalities could be abused to compute the correct solution, an author can restrict their use
in an exercise context.

For a CAS, the abstract features of exercises are specialized as follows.

•  The startup for a CAS contains the input instructions for the problem, the variable
definitions, library loading, user welcoming instructions, and maybe a restriction of the
CAS-methods to be used.

•  The shutdown for a CAS exercise is sent by the proxy to free-up any resource.

•  The eval for a CAS exercise checks whether the user input is a correct solution, they
compute the success rate, determine if the goal is achieved, and may print suggestions
or comments to the console.

The proxy of the console applet exercise type for a CAS calculation offers the functionality
for a remote teacher to view the exercise activity as well as to provide help messages to the
learner.

Proof Planning Exercises

A proof planner is a tool for supporting mathematical theorem proving. It applies so-called
methods to perform proofs. These problem solving methods represent typical proof steps such
as induction, the application of a theorem, or the simplification of a term. The learning of
methods is one of the key issues for Omega's use within the learning environment: a user can
learn in which situation which method can be applied, what happens when it is applied, and
memorize the methods. Moreover, the automatic expert solver in the background can provide
feedback, when the user encounters a dead end in her proof attempt or when an application
condition of a method does not hold.

Originally, the proof planner Omega was conceived merely as a proof assistant for logic
experts. In an educational environment, however, the typical user has quite different goals and
needs, so the tool and in particular its GUI is being modified. A few new features have been
introduced into Omega's graphical user interface (GUI). To avoid overloading, we designed an
interaction console, shown at the bottom of Figure 13. All the interaction functionality needed to
construct a proof is accessible through this window. The user can choose which subgoal to
prove next and which method to apply from a list of automatically selected methods.
Furthermore variables can be instantiated and proof steps can be backtracked. Whenever the
user gets stuck, the automatic proof planner can be called to perform the next step.

The proof in Figure 13 is one of the exercise problems about homomorphisms in the
Algebra Interactive (Cohen, Cuypers & Sterk, 1999) used as a first testbed for ActiveMath. On
the left side the proof tree is shown. The right side can contain either the formal proof,
consisting of proof lines with formulae, or its verbalization. In Figure 13 the verbalization of a
partial proof is shown too. This multi-modal presentation of a proof may be helpful for students.

The instructions for exercises are concretely specified for a proof planner as follows.

•  The startup contains the loading instructions for the goal and assumptions, the strategies
and methods that are allowed in that exercise, and the theory libraries to be loaded.

•  The current, still preliminary, shutdown for the proof planner mediates to the proxy the
success/failure in terms of proved and open lines and of the time taken for the solution
process.

•  eval instructions for the proof planner are not yet implemented.
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Figure13. The user interface for exercises with Omega.

Communication

In order to use existing mathematical software, ActiveMath needs to communicate with these
systems. The central communication component for any exercise activity is a proxy. It is
responsible of redirecting messages from the client-side GUI to the wrapper of a computational
tool. It informs the user model of the results of the user’s activity and allows for monitoring the
learner’s activity by a teacher.

As a service-management and -addressing infrastructure ActiveMath uses the MathWeb
(Franke & Kohlhase, 1999) service broker that directs requests to the appropriate services in a
network/Web and provides wrappers for the execution of stand-alone computational tools. The
xml-rpc9 communication with the wrappers made the computational tools available to
ActiveMath’ servlets.

Uniform Exercise Architecture

The generic exercise architecture is shown in Figure 5. There the arrows indicate the
communications, mostly xml-rpc connections. The connections to MBase and to the MathWeb
broker are both referred by static URLs, whereas for an exercise the URL of its server proxy is
dynamically created.

An exercise can be offered on the client by a Java applet or by any kind of user interface.
Its launch is triggered by an http request. This request is handled by the proxy servlet that
creates a proxy instance of the proper type and delivers the requested data including parameters

                                                     
9 http://www.xmlrpc.org
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to connect to the proxy. The proxy triggers the display of the user interface, requests the service
of the computational tool needed for the exercise, loads the authoring content from MBase, and
sends it to the tool. For more technical details see iamc01.

RELATED WORK

Some related work in the intelligent tutoring systems community is mainly documented in this
volume. ELM-ART (Weber & Brusilovsky, 2001) and its descendants are web-based tutoring
systems. ELM-ART II was designed for learning programming in LISP and integrates a LISP
compiler. Similar to ActiveMath it provides adaptive navigation support by annotating links in a
traffic-light metaphor and adaptive sequencing. The courses in ELM-ART are fixed and
therefore it is not possible to construct courses according to the user's goals and chosen
scenarios as in ActiveMath. ELM-ART has been under development since long and has reached
an impressive state of maturity and, as Weber and Brusilovsky point out in this volume,
versatility. ActiveMath does not yet offer the same range of communication tools (e.g.,
discussion lists, chat rooms), but the integration of existing tools is planned.

APHID-2 (Kettel, Thomson & Greer, 2000) extends an existing hypermedia generation
system with adaptivity by defining rules that map learner information (e.g., learning style:
example) to constraints (e.g. the number of examples per page) that influence the course
generation.

The Dynamic Courseware Generator (DCG) (Vassileva, 1997) is similar to the ActiveMath
system in that it generates individual courses according to the user's goals and knowledge. In
DCG, a planner searches for sub-graphs connecting the goal concept with concepts known by
the user. A linearized version of this plan is offered to the user to follow. If a user fails to
perform successfully on tests related to a certain concept, a new course plan can be generated.
Major differences to ActiveMath are the underlying knowledge representation of the learning
material, its usage, and ActiveMath' integration of tools for true interactivity which is not
intended for DCG. In DCG, concepts have links to fix -pages that present the actual content to
be learned, whereas in ActiveMath the content is generated dynamically from the generic
representation.

Van Marcke (Marcke, 1998) presents with GTE (Generic Tutoring Environment) an
intriguing approach to realise a generic instructional knowledge base. He defines a wide range
of instructional goals that correspond to teaching task (e.g., Clarify-Concept) and instructional
methods that achieve or decompose the instructional goals (e.g., Clarify-with-Analogy).
Currently we are thinking about redesigning our course generator to use a similar planning
mechanism (see also vassileva98).

The interactive mathematics textbooks (Cohen, Cuypers & Sterk, 1999; Dahn & Wolters,
2000) use a collection of predefined LATEX ddocuments or pages and include a fixed set of
examples and exercises, the second contains interactive explorations and exercises. In
DahnWolter, courses are split to small units (slices) that can be combined in order to construct a
textbook. The only adaptivity consists in selecting those pages connected to a certain goal.

Dynamic geometry systems such as CabriGeometre and geolog are neither web-based, nor
user-adaptive, and do not generate presentations but they have some other features in common
with ActiveMath. In a restricted way, the system geolog (Holland, 1996) employs an approach
similar to proof planning in ActiveMath. Holland investigated empirically how students can
learn geometrical constructions and proofs in a systematic way similar to what we call
(knowledge-based) proof planning (Melis & Siekmann, 1999).

For completeness reasons, we review some relevant commercial systems. It is hard to find
commercial solutions comparable to ActiveMath. Two categories of systems have features in
common with ActiveMath: (1) Web presentation systems for mathematics and (2) learning
environments.

(1) Presenting mathematics on the Web has always been a relatively delicate task. The fine
type setting quality required for mathematical documents imposes constraints on previewers of
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the presentation. Essentially, such a quality has been achieved by the TeX presentation system
which is, however, not targeted to Web presentations and strictly presentational.

Display of mathematics in Web browsers can be made by tools such as Latex2html10,
MathType11, Maple or Mathematica12 which provide formulas as pictures or applets. The
MathML emerging standard is a better approach but its support by browsers is still insufficient.
Still, presentational MathML is a purely presentational approach.

As opposed to presentational approaches, the separation of representation from
presentation in ActiveMath employs all the advantages of ontological xml and makes polishing,
adaptation for various Web browsers, or the generation of high quality presentations for print
(e.g., in Macromedia Flash) a task separated from authoring.

(2) Commercial learning portals such as WebCT13, Blackboard14, Learning Spaces15, or
TopClass16 are mostly designed to provide portals for courses, facilities like chat-rooms, live
group-teaching or forums, and administer content and users. As these tools are designed to
manage fixed files or their proprietary formats, they cannot adapt their content selection and
presentation to the user.

ActiveMath is somewhat complementary to the commercial software in that it presents
content on the Web that is represented purely semantically and already offers some of the
advantages of such an encoding such as the user-adaptive choice of content. Moreover, it
updates the user model, and integrates truly interactive exercises - features that none of these
systems offers.

CONCLUSION AND FUTURE WORK

This paper describes the design principles and their realization in the first version of
ActiveMath. The system dynamically generates interactive (mathematical) documents according
to the user’s content needs and presentational preferences and provides facilities for a user
interaction with (mathematical) service systems. A demonstration of ActiveMath is available at
http://www.activemath.org/demo.

ActiveMath is a generic web-based learning system with a distributed open architecture. It
is a shell system that can be filled with content and pedagogical knowledge. It allows to easily
configure pedagogical strategies for choosing, presenting, and sequencing learning content,
exercises, and examples as well as using scaffolding mechanisms. The open architecture can
integrate new components. Currently, a prototypical proof planner and two Computer Algebra
Systems are integrated into ActiveMath.

Its standardized xml-representation of knowledge and the dynamic generation of the actual
presentation are well-suited not only for interactive mathematics documents but more generally
for knowledge-intensive systems whose knowledge acquisition and representation is tedious and
should therefore be reused.

Future Work

The research and development of ActiveMath is still in an early stage. Aside from a series of
experiments in the near future, we are currently preparing a dynamic suggestion mechanism, a
drag-and-drop mechanism that relies on the semantic representation, improved rendering of
formulas, the integration of statistics software and multimedia data bases, and an intelligent
authoring tool. In the near future, we also plan to integrate some of the existing open-source
facilities like chats and user-management into ActiveMath.

                                                     
10 http://www.latex2html.org
11 http://www.mathtype.com
12 http://www.mathematica.com
13 http://www.webct.com
14 http://www.blackboard.com
15 http://www.ibm.com/mindspan
16 http://www.wbtsystems.com/
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More and diverse courses, multi-modal forms of feedback and an integration of natural
language dialogs will follow as well as research on a pedagogically valuable and constructivist
use of proof planning.
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