A Collaborative Case Study System For Distance Learning

Abstract : Distance Learning from Case Studies involves enabling collaboration between two or more learners at a distance on a case study activity. In this paper we present an empirical qualitative study that simulates a learning scenario in which a pair of subjects at a distance are provided with a collaborative learning environment and required to collaborate in order to solve a case study. The results of this empirical qualitative study have implications that informed the design of a system: LeCS (Learning from Case Studies). LeCS is a web-based collaborative case study system that can be applied to any domain in which the learning from case studies method is used. It provides a set of tools for geographically dispersed students working collaboratively on the case study solution. In addition, it accomplishes functions regarding the learning process that together give real-time support to the distant learners during the development of the case study solution. The paper gives a general description of LeCS: its user interface, implementation, and agent-based architecture. Moreover, it describes how LeCS addresses the recommendations derived from the empirical study. (http://aied.inf.ed.ac.uk/members04/archive/Vol_14/Rosatelli/Rosatelli04.html)
Type de document :
Article dans une revue
International Journal of Artificial Intelligence in Education (IJAIED), 2004, 14, pp.97-125
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://telearn.archives-ouvertes.fr/hal-00197307
Contributeur : Jerome Zeiliger <>
Soumis le : vendredi 14 décembre 2007 - 14:58:49
Dernière modification le : vendredi 27 mars 2015 - 14:57:26
Document(s) archivé(s) le : jeudi 27 septembre 2012 - 11:21:18

Fichier

Rosatelli04.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00197307, version 1

Collections

Citation

Marta C. Rosatelli, John Self. A Collaborative Case Study System For Distance Learning. International Journal of Artificial Intelligence in Education (IJAIED), 2004, 14, pp.97-125. 〈hal-00197307〉

Partager

Métriques

Consultations de la notice

262

Téléchargements de fichiers

129