A Didactic-based Model of Scenarios for Designing an Adaptive and Context-Aware Learning System
Jean Louis Tetchueng, Serge Garlatti, Sylvain Laubé

To cite this version:

HAL Id: hal-00197199
https://telearn.archives-ouvertes.fr/hal-00197199
Submitted on 14 Dec 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A Didactic-based Model of Scenarios for Designing An Adaptive and Context-Aware Learning System

Jean-Louis Tetchueng1, Serge Garlatti1, Sylvain Laube2

1 ENST Bretagne, GET CS 83818, 29238 Brest Cedex, France
2 CREAD, IUFM Bretagne, 8, rue d’Avranches, 29200 Brest, France
jl.tetchueng,serge.garlatti}@enst-bretagne.fr
sylvain.laube@bretagne.iufm.fr

Abstract

Nowadays, technology-enhanced learning systems must have the ability to take into account the context and to allow dynamic adaptation to different learners based on substantial advances in pedagogical theories and knowledge models. The main issue is to design a generic scenario which can deal with the broadest range of learning situations. From a generic scenario, the learning system will compute on the fly a particular scenario dedicated to the current learner and its learning situation. The main contribution of this paper is a semantic and didactic-based model of scenarios for designing an adaptive and context-aware learning system. The scenario model is acquired from: i) the know-how and real practices of teachers ii) the theory in didactic anthropology of knowledge of Chevallard [1]; iii) a hierarchical task model.

1. Introduction

Nowadays, technology-enhanced learning systems must have the ability to reuse learning resources (learning objects, tools and services) from large repositories, to take into account the context and to allow dynamic adaptation to different learners based on substantial advances in pedagogical theories and knowledge models [2].

We are interested in technology-enhanced learning systems using a problem-based learning approach, represented by scenarios. The goal of scenarios is to describe the learning and tutoring activities to acquire some knowledge domain and know-how to solve a particular problem. A scenario may depend on several dimensions which describe different learning situations: the learning domain (course topic), the learner (his know-how and knowledge levels), the tutor/teacher, the learning and tutoring activities (their typology, organization and coordination), the activity distribution among learners, teachers and computers, the learning “procedures” according to a particular school/institution/ university and the didactical / pedagogical environment. In other words, dimensions are closely related: changing one dimension leads to the change of others. Research on the learning scenario models leads to the standardization of pedagogical approaches - IMS LD [3]. These models enable authors/teachers to produce generic and standard models which are neutral on a pedagogical and/or didactical point of view. In other words, there are unable to deal with all mentioned dimensions.

The main contribution of this paper is an adaptive and context-aware model of scenarios based on a didactical theory, a domain model, a learner model and a context model. The different scenario dimensions are acquired from: i) the know-how and real practices of teachers in a problem-based learning approach in a particular framework: an institution IUFM1, different categories of probationary teachers, a course about “the air as gas in its static and dynamic aspects: properties, theory and applications”; ii) the theory in didactic anthropology of knowledge of Chevallard [1]; iii) a hierarchical task model. The hierarchical task model enables us to define the learning and tutoring activities, the activity distribution among learners, teachers and computers and also to transpose the main concepts of the Chevallard theory. The Chevallard theory provides a task typology, the features of the learner knowledge and know-how levels and a reusable overall structure for scenarios.

First of all, we apply the Chevallard theory in didactic anthropology of knowledge to acquire and structured the scenario from teacher real practices. Secondly, the computer-based model of scenarios is explained and justified. The transposition of the main concepts of Chevallard theory and the typology of learning and tutoring activities is explained. Finally, the conclusion highlights the main results and the next research issues.

2. Acquisition of teacher practices and know-how

The MODALES2 project aims at designing an adaptive learning system for probationary teachers, based on real practices and teacher know-how. The course topic is about

1 IUFM : Institut Universitaire de Formation des Maîtres
2 Modeling Didactic-based Active Learning Environment in Sciences
"le air as gas in its static and dynamic aspects for different categories of probationary teachers (primary school teachers (called PE for "professeur des Ecoles" and secondary school teachers (called PLC for "professeur des Lycées et Collèges": earth/biology sciences and physics). The teachers are considered as experts in education.

Firstly, several scenarios based on a common learning scenario P_o (whose variables are learners, the expert teacher and the available resources) were built. Secondly, we use the theory in didactic anthropology of knowledge of Chevallard to go further [1]. The praxeology system $(T/\tau/\Theta/\Theta)$ of the Chevallard theory enables us to acquire the scenario model and the didactical environment. According to Chevallard, teacher and learner activities can be described in terms of types of tasks T achieved by techniques τ which may be recursively achieved by subtasks T_{τ}. Thus, a Task/Technique system (T/τ) has a hierarchical structure. This hierarchical structure (T/τ) defines a know-how that leans on an environment composed of a technology Θ (discourse that justifies and explains techniques) and a theory Θ justifying and highlighting the technology.

We can observe six different moments in the didactical organization [1]: i) the first encounter with the type of tasks T_1 (M1); ii) the exploration of the type of tasks T_τ and the construction of techniques τ (M2); iii) the technique work that improves the technique and makes it more efficient (M3); iv) the construction of a Technology/Theory related to technique τ (M4); v) the institutionalization of the system $(T/\tau/\Theta)$ by the teacher (M5); vi) the evaluation (M6) (cf. Figure 1). For a given technique, a task can be decomposed into sub-tasks which are achieved according to specified operators. At present, three different operators are used: sequence, alternative and parallel.

Moreover, the scenario analysis shows different categories of learning and tutoring tasks, organized at different levels of the task hierarchy: scenario, phase, moment, learning task, routine task and tutoring task. A scenario is generally composed two phases: 1) Phase 1: construction of professional references for teaching (cf. figure 1), 2) Phase 2: development of a training sequence implemented in classrooms.

The adaptation of scenarios leads to choose the relevant technique according to the learners and the didactical environment. According to the Task/Technique system, the choice can be done by the computer, the learner or the teacher. The selection of the relevant technique depends on the following properties: the Task/Technique system, the learner category (PE, PLC, type of PLC, etc.), the learner knowledge and know-how levels and the didactical environment. The didactical environment consists of the type of classrooms (virtual classroom, scientific laboratory with or without computers and/or with or without internet access, associated CITT tools (chat, email, forum, etc.), technical instruments (thermometer, barometer, etc.), resources (documents, experiments, etc.) and face to face or at distance.

The course topic is about "the air as gas in its static and dynamic aspects: properties, theory and applications". In the Chevallard framework, the considered theory is thermodynamics. In physics, theories can be "evaluated" by means of different laws. In our case, it is the Boyle-Mariotte law which is represented as follows (PV/T = K) for PE Learners. The knowledge domain is composed of the thermodynamic theory, the corresponding laws, the related concepts (Pressure P, Volume V, and Temperature T) and their relationships. To deal with the learner knowledge and know-how levels, the knowledge domain entities (theories, laws, concepts and relationships) and the type of tasks may have three different states: "not acquired", "in progress", "acquired". We assume the learner states for the concepts "P", "V" and "T" are "acquired" (otherwise more techniques must be added and consist of sub-tasks dedicated to the acquisition of the corresponding knowledge). For a given type of task, the state "not acquired", correspond to the moment M1 and the states "in progress" and "acquired" correspond respectively to the moment M2 and M3. After a successful evaluation task, a teacher or the computer can update the learner know-how and knowledge levels for some domain entities and for a task, for instance from "in progress" to "acquired" if the corresponding know-how is considered as acquired.

In Figure 1, several techniques are annotated with the knowledge and know-how levels: the prerequisite and outcome states of the learner. When it is the first encounter of the type of task “experiments on proof

3 Communication and Information Technologies for Teaching
system", the corresponding learner state is “not acquired”. Thus, the relevant technique is “Technique 1”. After a successful evaluation sub-task, his outcome state will be “in progress” for the task. When the learner state for the type of task “experiments on proof system” is “in progress”, the relevant technique is “Technique 2”. After a successful evaluation sub-task, his outcome state will be “acquired” for the task. If the evaluation task fails, a remediation task is used (not described in figure 1). The type of task “experiments on proof system” can be worked several times a year in different modules about astronomy, thermodynamics, etc. in physics. Thus, the relevant technique may change according to the moment at which the type of task “experiments on proof system” is worked in a particular module. Thus, several alternatives are provided for a given type of task.

From the didactical environment, we firstly explain the role of the technical instruments. An historical and epistemological analysis of several historical and didactical situations shows that laws in physics are tested by means of technical instruments [4]. For instance, the technical instruments could be a thermometer and a barometer or a simulation tool. Thus, the learners must have or acquire know-how to use these technical instruments to solve the problem related to the task “phase 1”. Whether the learner state for these tasks “temperature and pressure measurements” are “not acquired” or “in progress”, the relevant technique must have the corresponding prerequisite states and must consist of sub-tasks dedicated to the acquisition of the corresponding know-how.

The “face to face” or “at distance” feature change the Task/Technique system and the activity distribution among learners, teachers and computers. It is the same for the type of classrooms and the CITT tools. Moreover, some specific know-how may be assumed (internet access and information gathering, forum, chat, etc.) to achieve communication tasks or information retrieval tasks. Thus, such know-how must be routine tasks or at least acquired. Otherwise, it is necessary to have sub-tasks to acquire such know-how.

In conclusion, we show that, it is necessary to describe the different techniques according to the learner and the didactical environment features to be able to choose the relevant technique.

3. Adaptive and context-aware model of scenarios

From the acquisition of teacher real practices by means of the Chevallard theory, the didactic-based scenario model is transposed into a computer-based hierarchical task model. Firstly, we describe and justify the transposition of the Task/Technique systems and their hierarchical structure. Secondly, we analyze the representation of the typology of learning and tutoring activities. Finally, we show how the adaptation is formalized according to parameters describing the learner, the context.

Teaching and learning activities of scenarios have been described in terms of type of tasks \(\tau \) and techniques \(\tau \). The type of tasks \(\tau \) describes the teaching and learning activities, while techniques \(\tau \) describe a way of achieving the types of task \(\tau \). We transpose the resulting Task/Technique system \((\tau/\tau)\) in the task/method paradigm of the hierarchical task model. Therefore, we can represent in these model, the Task/Technique system \((\tau/\tau)\) of Chevallard [1] fitted with its hierarchical structure and didactics properties describing scenarios while we preserve its initial properties and semantics.

Several research studies in AI\(^4\) focus on the hierarchical task model using the tasks/method paradigm [5, 6]. The mechanism of hierarchical and recursive decomposition of a problem into sub-problems is one of the basic characteristics of the hierarchical task model [5, 6]. The hierarchical task model consists of abstract and atomic tasks and methods. In a particular task, a method represents the various ways of achieving this task. A method describes the decomposition of its task into sub-tasks. The execution of these sub-tasks is done through a control structure which is composing of the following operators: sequence, parallel, choice. Their respective specifications are quite the same as those of ‘seq’, ‘par’ and ‘alt’ presented in the paragraph 3. Thus, an abstract task can be broken down into abstract or atomic sub tasks through its associated methods. An atomic task is not composed of sub-tasks. It can be achieved by a simple procedure – for instance, an information retrieval process, a particular human computer interaction, etc. The task/method paradigm has respectively a semantic and a hierarchical structure similar to those of the Task/Technique systems \((\tau/\tau)\) of Chevallard. Moreover, we have to refine the task and method concepts of our model (specialization) to take into account adaptation and sharing of activities.

The typology of tasks of our computer-based model identifies the various types of tasks \(\tau \) which compose the scenarios described in paragraph 3: scenario, phase, moment, learning tasks, routine tasks, tutoring tasks. These types of tasks are transposed in the computer-based model and are respectively named «ScenarioTasks», «Phase Tasks», «Moment Tasks», «Learning Tasks», «Routine Tasks», «RoutineTasks».

4 Artificial Intelligence
techniques. It aims at a dynamic selection of the relevant methods according to the context and the current learner. The know-how and knowledge levels of the learner are represented by an overlay model associated to the learner model.

The context model represents the didactic environment as described in the paragraph 3. It is described by the type of classroom in which the learning activities will take place, the associated CITT tools and devices, a list of technical instruments which are a subset of those in the domain, “face-to-face” or “at distance”. The domain model consists of the thermodynamic theory, the corresponding laws, the related concepts and their relationships. The learner is described by his curriculum, his category (PE, PLC, type of PLC, etc.) and his knowledge and know-how levels (an overlay model): a set of states ("not_acquired", "in_progress", "acquired") for some domain entities and know-how (tasks). These states are assigned to the learner and are updated.

The context, learner and domain models will be represented by means of ontologies within SCARCE (SemantiC and Adaptive Retrieval and Composition Engine) environment [7]. The adaptation process in SCARCE consists of two stages: firstly, resources are evaluated and classified in one equivalence class according to class membership rules. In this paper, we only need two equivalence classes (“good” and “bad”); secondly, one adaptation technique is chosen for the current learner (annotation, hiding, sorting, direct guidance, etc.). All methods, belonging to the class “good”, are selected for the learner. The membership rules define necessary and sufficient conditions to belong to an equivalence class. Rules are declarative predicates using context, learner and method features (which are binary relationships).

Thus, let T_s be a task, Ci be a context, L be a learner, SL the current set of states describing the knowledge and know-how levels of L. The adaptation process is as follows: 1) If SL does not have a state for the task T_s, the corresponding state is added to SL with value: SL.T_s = “not_acquired” (the task T_s does not be worked). 2) Membership rules: all methods of T_s for which the context and the learner features match up to the corresponding method features (or “belong to” for multiple-valued features) belong to the class “good” and others belong to the class “bad”. 3) If the class “good” is empty, it is considered as a problematic situation and required a teacher action to remediate or to provide a new method and context adapted to the learner and the task T_s. Otherwise, all methods, belonging to the class “good”, can be provided to the learner.

4. Conclusion

We propose an adaptive and context-aware model of scenario based on a didactical theory and closely related to a domain model, a learner model and a context model. The Chevallard theory provides at least a task typology (phase, moment, learning task, routine tasks, etc.), task/technique systems represented in task/method paradigm, the representation of the learner knowledge and know-how levels corresponding to the moment M1, M2 and M3: an overlay model having three states (“not_acquired”, “in_progress”, “acquired”). We are implementing the scenario model in SCARCE. Nevertheless, the model is not complete. At present, we only manage one category of adaptation. In other word, we need to continue the co-design process in order to precise the other adaptation categories and to refine the different models.

Acknowledgments: The project MODALES receives funding from Brittany region as a PRIR project.

5. References