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Abstract 

Many problems that learners regularly encounter during discovery learning 
with computer-based simulations have been identified. A number of studies 
have examined different ways of support for discovery learning by facilitating 
the learning process. This study examines the effect of facilitating access to 
prior knowledge through just-in-time information. It is expected that access to 
just-in-time information will foster learning but will not interfere with it. To 
test these hypotheses, an experiment was conducted in which a group of 
students who worked with a computer simulation had access during learning 
to ‘knowledge tips’. Performance of this group was compared with that of a 
group who had no access to knowledge tips. It was found that the experiment 
group showed a better learning gain than the control group. The implications 
of the results are shortly discussed. 

 

Introduction 

While computers continue to advance into virtually all aspects of our culture, their effective 
use in education is still surrounded by controversy (Stoll, 1999). Although considerable 
progress has been made in understanding of the opportunities and potential that computers 
offer for educational practice, some aspects remain problematic. A review by Angrist and 
Lavy (2002) of the Israeli Tomorrow-98 programme, a billion-dollar venture aimed at 
creating an environment supportive of integrating information technologies in the classroom, 
has shown very little beneficial short-term effects of increased computer use. This has led the 
authors to conclude that ‘money spent on CAI [Computer Aided Instruction] in Israel would 
have been better spent on other inputs (p. 761)’. These findings show that, viewed on a large 
scale, there exist many factors that impede successful implementation of computers in 
educational situations. On a smaller scale, much research has been devoted to studying the 
specific circumstances under which computers can be effective learning tools. This is usually 
done by comparing various types of computer-based instruction to more traditional forms of 
learning. One type of instruction that fully exploits the potential of computer-regulated 
learning is known as discovery learning (De Jong & Van Joolingen, 1998). Discovery 
learning means that the content of a domain is not explicitly stated to learners. Instead, 
learners have to ‘discover’ the material for themselves using techniques that can be compared 
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to the behavior of a scientist who explores a domain. A technique that has proven useful in 
eliciting discovery learning processes is by the use of computer simulations (De Jong, 1991; 
De Jong & Van Joolingen, 1998). A computer simulation provides students with a virtual 
environment in which they can design and perform different types of experiments, and 
observe the effect of manipulating variables in various ways. When used as an instructional 
tool, students’ task is to induce the relations between variables in the simulated domain 
through exploration, experimenting, and discovery. A central characteristic of discovery 
learning is that information is not delivered to students in a piecemeal fashion. Instead, the 
process is a relatively demanding one: students are required to gather evidence themselves 
and accordingly construct, shape, and modify personal hypotheses. It is supposed that during 
learning, through various ‘acts of discovery’, experimental evidence is transformed in such a 
way that new information can be induced (Bruner, 1961). The complete process of 
experimenting and inducing rules should gradually lead to understanding of the model that 
underlies behavior of the simulated system. In an information-processing description of the 
discovery learning process, two main cognitive processes can be distinguished: 
transformative and regulative processes (Njoo & De Jong, 1993). Transformative processes 
include all the reasoning and decision making that guide manipulating a computer simulation 
and extracting information from it. These involve orientation, hypothesis generation, 
hypothesis testing, and drawing conclusions. The goal of transformative processes is to 
produce new information. Regulative processes are meant to control the discovery learning 
process on a metacognitive level. This involves monitoring one’s own behavior, keeping 
track of progress, and planning in advance what steps to undertake.  

Since discovery learning involves so many different processes that need to occur 
simultaneously on different levels of cognition, it is perhaps not surprising that it has been 
difficult to prove its effectiveness. The problems that students encounter in discovery 
learning can be classified into four components: hypothesis generation, design of 
experiments, interpretation of data, and regulation of learning (De Jong & Van Joolingen, 
1998). Proper performance of all the component tasks that make up the learning process 
requires both (partial) knowledge, and skills necessary to execute and complete each task. 
Research on discovery learning has identified at least four factors that influence the learning 
process, and determine its effectiveness: prior domain-specific knowledge, generic 
knowledge of quantitative and qualitative relations between variables, discovery skill, and 
metacognition (De Jong, Beishuizen, Hulshof, Prins, van Rijn, van Someren, Veenman & 
Wilhelm, in press). Domain-specific knowledge and generic (domain-general) knowledge are 
partially independent entities. Discovery skill refers to a specfic ability, ie. student’s aptitude 
for performing and interpreting experiments. Metacognition refers to the generic ability to 
regulate discovery learning processes. Knowledge and skills contribute differently to the 
process of transformation and regulation. Here, a short description is given of the way 
knowledge and skill influence discovery learning. 

Knowledge plays an important role in determining the steps that learners undertake in the 
process of experimenting with a simulation and discovering information. Even transformative 
processes that yield knowledge themselves require at least some prior knowledge to function. 
For example, lack of prior domain-specific knowledge makes the process of orientation 
difficult, since learners who lack knowledge will have trouble separating relevant from 
irrelevant variables, which will cause them to overlook potentially interesting relations 
between variables (Veermans, 2001). The determining role that prior knowledge plays in 
setting up a context for discovery learning is reflected in the SDDS framework (Scientific 



Discovery as Dual-space Search) by Klahr and Dunbar (1988). Klahr & Dunbar likened the 
process of discovery of a rule (that is, discovery of the relation between an input and output 
variable) to problem solving. SDDS extends the problem solving model by Newell and 
Simon (1972), which describes it as a search through a problem space. In SDDS, two (‘dual’) 
search spaces are postulated: hypothesis space and experiment space. In this view, the 
process of discovery entails traversing both search spaces, so that the end result is a set of 
rules that correctly describe the observed behavior of variables. During learning, searching 
each of the problem spaces requires different decisions. Van Joolingen & De Jong (1997) 
have given an overview of the decisions that guide the search through the two spaces. For 
example, in experiment space search is guided by the choice of variables to manipulate and 
the values to assign to these. In hypothesis space, search is guided by manipulations that 
operate on one of more of the set of hypotheses a learner has in mind (e.g., change a 
hypothesis about a qualitative relation between two variables into a quantitative). When 
behavior during rule discovery is studied, a a broad distinction can be observed between 
students who follow a hypothesis-oriented approach and students who follow an experiment-
oriented approach. Students can be broadly classified as being either ‘theorists’ or 
‘experimenters’, based on the manner in which they discover a rule. Klahr has stated that the 
distinction between an experimenter and theorist approach to rule discovery stems from 
differences in prior knowledge (Klahr, 2000, p. 77). From this description it becomes clear 
that knowledge not only should help students in making sense of a learning situation, but 
should also influence the discovery learning process itself. Although the claim that prior 
knowledge affects rule discovery to a large extent is supported by empirical data, it is 
uncertain if this notion can be extrapolated to include discovery learning in the type of 
complex learning environment that a computer simulation entails. In previous studies that we 
conducted (Hulshof, 2001; Hulshof & De Jong, 2004), only limited effects of prior 
knowledge on discovery learning were found. Moreover, it was found that prior domain-
specific knowledge about the simulated domain (geometrical optics) was poor in general. 
Learning results showed that students did not improve from pretest to posttest, and even 
tended to get worse. The implication of these findings is that discovery learning with a 
computer simulation can be severely hampered by students’ lack of prior knowledge. 

In addition to knowledge, students’ level of discovery skills is assumed to influence the type 
of experiments a student performs in a simulation, especially the sequence in which 
experiments are performed. For discovery learning to be successful, experiments should be 
performed in such a way that enough cognitive resources needed to make inferences from 
observation of the experiment data are available. However, many students show 
shortcomings in their approach to experimenting. As Tschirgi (1980) has observed, students 
tend to change more than one variable from experiment to experiment, which in most cases is 
a suboptimal strategy. In a study by Klahr & Nigam (2004), the effect of direct instruction on 
learning about the ‘control of variables strategy’ (CVS; also known as the VOTAT-strategy, 
cf. Tschirgi, 1980) was compared with that of discovery learning about the strategy. The 
results were in favor of direct instruction: not only did more children in the ‘direct 
instruction’ condition learn about the strategy, they also were better able to make better 
scientific judgements. As Klahr and Nibam point out, the main difference between direct 
instruction and discovery learning in their experiment lay in the information and feedback 
that was given to students: whereas students in the direct instruction condition received ample 
feedback and information, students in the discovery learning condition were shown no 
examples or given any explanations. 



Given the findings that many students appear to lack the knowledge and skills that are 
required for successful discovery learning, the implication seems to be clear: discovery 
learning can not be as effective as direct instruction because many students lack either or both 
the knowledge or the skills necessary to guide transformative and regulative learning 
processes. However, there are a number of ways in which the situation can be remedied.  

Students can be supported during discovery learning in various ways. Regulative processes 
can be supported by structuring a computer simulation, for example by starting with a simple 
simulation and gradually moving on to more complex situations. Transformative processes 
(Orientation, hypothesis generation and testing, and drawing conclusions) can be fostered by 
adding ‘support tools’ to a computer simulation. However, support is not always effective. It 
can even have the effect of degrading, or hampering, performance (Pieters & Van der Meij, 
1994). For example, Van Joolingen (1993) used a structured hypothesis scratchpad to help 
students in making hypotheses explicit. It was expected that students who had this scratchpad 
at their disposal would come up with more and better hypotheses than students who did not. 
The actual result was that students who had the hypothesis scratchpad available conducted 
fewer experiments and stated fewer hypotheses than students who did not. Addition of a 
hypothesis scratchpad to a computer simulation did not help students in conducting 
experiments and generating hypotheses. The problem may have been that the addition of a 
tool to an already complex learning situation provided an extra task to learners, which they 
found difficult to cope with given the relatively short time for the experiment. Shute (1993) 
has argued that tools that aim at supporting discovery learning can interfere with the learning 
process itself. This interference disrupts compilation of knowledge and can have an adverse 
effect on learning. Although support tools may help in the process of hypothesis testing, they 
do not provide the information that is needed for orientation. Shute (1993) found that the 
availability of an on-line hypertext containing definitions and explanations had a positive 
effect on discovery learning. Leutner (1993) emphasizes that providing information to 
students should be carefully timed, since providing it before a learning session does not seem 
to help students in making sense of a learning situation. Berry and Broadbent (1987) argue 
that the effect of providing information is much higher if it is made available to students as 
soon as they need it, on a ‘just-in-time’-base. A potential problem in offering support in the 
form of tools or on-line information is that it may influence the discovery learning process. 
This may detract from the potential advantages that this type of learning has over direct 
instruction. Therefore, to preserve the characteristics of discover learning, support should 
have minimal influences on the learning process itself. Students should be free to explore a 
simulation environment, and to design their own experiments. 

Based on the discussion above, it was hypothesized that an effective type of support for 
discovery learning, which does not disrupt the learning process, should conform to the 
following three principles: support should be 1) unobtrusive, 2) minimal, and 3) available on 
a just-in-time base. The support should be unobtrusive in the sense that it should not be 
necessary for all students to use the support as part of the learning process. The optimal 
situation is one in which students should be able to get by with a minimum access to the 
support measure. Support should be minimal because otherwise it will interfere with the 
learning process, which may have detrimental effects. Also, support is meant to scaffold the 
discovery learning of students, not replace it. Finally, support should be available at the 
moment that students require it. This means that support should not be provided too early (in 
which case students may be confused by it) or too late (in which case the support has lost its 
relevancy). 



The question that the present research attempts to answer is twofold. First, is it possible to 
provide the type of just-in-time support to students in the context of discovery learning with a 
computer simulation? Secondly, is such support effective, compared to a situation in which it 
is not available? To answer these questions, a special type of ‘knowledge tips’ support was 
created. This support consisted of a number of short blocks of text that contained domain-
specific and general information. An attempts was made to deliver these information blocks 
in such a way so that they were available to students on a just-in-time base. The support was 
made to be unobtrusive in the sense that students were not required to access the information 
at any time during learning. The information blocks were minimal in the sense that the 
information that was given was short and succinct. The context in which the support measure 
was evaluated was a computer simulation (called ‘Optics’) on the topic of geometrical optics. 
The simulation was set up in such a way that there was a lot of room for exploration of the 
relations underlying the behavior of light through a lens. 

It is expected that access to knowledge tips fosters discovery learning with the Optics 
simulation. Students who can access knowledge tips during learning should show a higher 
learning gain than students who work freely with a computer simulation. Further, it is 
expected that if the support measure succeeds in being unobtrusive, it should not interfere too 
much with the learning process itself. Therefore, only minimal differences between students 
who use knowledge tips and students who do not are expected with respect to interaction 
behavior with a computer simulation. Finally, it is expected that there will be variation in the 
number of tips that students access. Students with poor domain-specific prior knowledge are 
expected to make less use of knowledge tips than students with high domain-specific 
knowledge. This expectation is in accordance with a finding by Hasselerharm and Leemkuil 
(1990), who found that students with little prior domain-specific knowledge made less use of 
an optional support tool than students with high ability. 

 

 

Method 

Participants 

Thirty-two subjects participated in the experiment. All subjects were students who were 
following technical vocational education, The mean age of the subjects was 19 years. 
Subjects came from two school classes, both in the same year of study. All had followed a 
physics course as part of the curriculum. Subjects received a financial compensation of €23 
for their participation in both experimental sessions. 

 

Design 

A two-group pre-posttest design was used for the experiment. Two conditions were used, an 
experiment condition and a control condition. Subjects were randomly assigned to one 
condition. Computers were positioned in such a way that subjects in different conditions were 
not seated next to each other. In both conditions, subjects worked with the Optics simulation 
environment. In the experiment condition, subjects were informed about the ability to access 
so-called ‘knowledge tips’. In the control condition, subjects did not have access to these tips. 

 



Learning environment 

The learning environment that was used in the experiment was the Optics computer 
simulation (De Jong et al., in press). The simulated domain was basic geometrical optics. The 
simulation allowed subjects to experiment with a virtual optical workbench, in which the 
properties of light and different kinds of lenses could be explored. In Figure 1, an example of 
the simulation is shown. 

 

---------------------------- 

Figure 1 about here 

---------------------------- 

 

The figure shows a complex, but not untypical, situation that subject could create. The 
simulation can be divided into two areas. At the top, a row of icons indicates the operations 
subjects could select to perform in the simulation. The bottom part, called the ‘working area’, 
is where subjects could manipulate objects, such as different types of lamps and lenses. In the 
figure, a large lamp on the left is sending light in all directions. Light passes through a 
surface filled with holes. Together, the holes form an L-shape. Divergent light rays that 
originate from the holes in the surface pass through a lens (marked ‘C’). Because the surface 
is within the focal length of the lens, no image is projected on the screen at the right. Instead, 
a virtual image is formed. This virtual image can be made visible by the use of the ‘eye’-tool 
(positioned at the right). The virtual image is marked by a blue circle. It was possible to 
measure properties of the virtual image, as if it were a normal projected image. In the figure, 
the top row shows on the left three different lenses that were available to experiment with 
(the lenses had different focal distances). Next to the large lamp (which is positioned on the 
left of the working area, and can not be moved), a lamp with one light beam, a lamp with 
three divergent light beams, and a lamp with three parallel light beams were available. Both 
horizontal and vertical distances could be measured, and also the angle with which a light 
beam entered or exited the lens. Light beams could also be rotated a specific number of 
degrees. As an extra aid, light beams could be extended in any direction by adding one or 
more help lines. Subjects were allowed to make notes while they worked with the simulation. 
For this they were handed paper; there was no need to enter notes in the simulation itself. 

 

Knowledge tips 

In the experiment condition, nine knowledge tips were available to subjects. Figure 2 shows 
two examples of tips that were used in the experiment. 

  

---------------------------- 

Figure 2 about here 

---------------------------- 

 



As can be seen from the table, tips could consist of multiple parts. The first part of each tip 
contained domain-specific information on some concept of geometrical optics. The second 
part contained general advice on how experiments could be used in the Optics simulation to 
observe the information given in the first part. Also, relevant objects that could be used to 
perform appropriate experiments were listed. Finally, some tips gave a clue about the 
expected outcome of experiments. Knowledge tips could be accessed at any time by subjects, 
but they were not required to access any. In the experiment condition, the bottom line of the 
Optics simulation contained a set of nine small icons, one for each tip. Clicking on an icon 
would open a small popup-window in the simulation. Tips were not accessible immediately. 
Instead, new tips were made available every three minutes. The first tip was available after 
three minutes, the second after six, and so on until the last tip. After 27 minutes, all nine tips 
were available. When a tip became available, its corresponding icon changed color; it could 
then be accessed. Once a tip had become available, it could be accessed and closed as many 
times as subjects preferred. 

 

Tests 

Three pretests were administered: a test for domain-specific knowledge about geometrical 
optics, a test for generic knowledge about mathematical relations, and a test for 
experimentation skills in the context of a discovery task. At the end of the experiment, a 
domain-specific knowledge posttest was administered. 

Two example items from the generic knowledge test about mathematical relations are shown 
in Figure 3. The test was a paper-and-pencil test, consisting of 32 items in total. Of these, 29 
were multiple-choice items. The other items required a short written explanation, such as a 
formula.  

 

---------------------------- 

Figure 3 about here 

---------------------------- 

 

The test for domain-specific knowledge about geometrical optics was a paper-and-pencil 
multiple-choice test consisting of 30 items in total. Two example items are shown in Figure 4. 
The test contained items that asked for conceptual knowledge about geometrical optics, and 
items that required subjects to predict how changes in a situation would affect light 
propagation through a lens. In the test, pictures that represented situations similar to those in 
the Optics simulation were used to present situations about which multiple questions were 
asked. 

 

---------------------------- 

Figure 4 about here 

---------------------------- 

 



The test for discovery skills used a combination of a computer task and a paper-and-pencil 
test. The computer task was an adapted version of the FILE task (described in detail in 
Hulshof, Wilhelm, Beishuizen & van Rijn, 2004; also see Wilhelm, Beishuizen & van Rijn, 
2004). The maximum time subjects were allowed to work with the computer task was 30 
minutes. After subjects had indicated that they knew the effect of the five variables in the 
FILE task, a paper-and-pencil test was administered, which consisted of 6 short questions. 
Test items required subjects to state the effect of each of the five variables in the FILE task 
on the outcome. Based on the answers, subjects were classified in one of 4 different levels. 
Subjects were classified as level 1 if they did not find correct main effects, and no interaction 
effect; as level 2 if they did find correct main effects but no interaction effect; as level 3 if 
they found correct main effects and the correct interaction effect, but also one or more 
incorrect effects; finally, as level 4 if they found correct main effects and the correct 
interaction effect, and no other effects. The category a subject is classified in can be used as a 
measure for the level of discovery skills, with level 1 being the lowest, and level 4 the highest 
level of discovery skills. While answering the test, subjects were allowed to examine the 
experiments they had carried out and any notes they had made on paper, but they were not 
allowed to create any new experiments in FILE. 

 

Process measures 

All operations that subjects performed in the Optics computer simulation were automatically 
registered by the computer they were working on. This made it possible to analyze the 
activity subjects showed while they worked with the simulation. 

 

Procedure 

The experiment was divided over two sessions, about one week after another. The sessions 
lasted about 80 minutes. In both conditions the same procedure was followed. In the first 
session the pretests were administered. The tests were administered one by one in the 
following sequence: first the generic knowledge test, which took about 25 minutes to 
complete, next the domain-specific knowledge test which took about 15 minutes, and finally 
the discovery skills test. To log in on the computer for the discovery skills FILE task, each 
subject was given a login code. Subjects worked on the FILE task for about 30 minutes, after 
which a short paper-and-pencil test was administered. The second session was spent on 
working with the Optics computer simulation. Subjects were informed at the start of the 
session that they would receive a knowledge test afterwards. All subjects were given an 
instruction sheet which contained an explanation of buttons and tools in the Optics computer 
simulation. This sheet remained available to subjects during the session. Both conditions 
received similar instructions. However, subjects in the experiment condition received added 
instruction on the use of knowledge tips. In both conditions, subjects were given the 
assignment to perform experiments with Optics, and to use the tools they had at their disposal 
in the virtual environment of the simulation. The instruction encouraged subjects to make use 
of the clues that were given by the simulation, and to make notes on paper. During the 
session, subjects who got stuck were always referred to the assignment and the instruction 
sheet. No further instructions were given. All subjects started experimenting with the Optics 
simulation at the same time. Subjects worked with the simulation for approximately 50 
minutes, after which the program was ended and the domain-specific knowledge posttest was 



handed out. The posttest was administered the same way as the pretest, and took subjects 
approximately 15 minutes to complete. 

 

 

Results 

Two types of results are relevant for the present experiment: performance on the three 
pretests and the posttest, and the process data. Analysis showed no difference between the 
two school classes that participated in the experiment, so only results for the complete group 
are described in this section. Test results are described first, followed by process results. 

 

Test measures 

Reliability for the test for generic knowledge of mathematical relations (as measured by 
Cronbach’s α) was 0.71. Test scores ranged from 11 to 28 (out of 32 test items), with a mean 
score of 21.1 (standard deviation 4.2). 

Reliability for the domain-specific knowledge pretest was 0.51, and for the posttest 0.66. The 
mean pretest score was 15.3 out of 30 test items (standard deviation 3.7), mean posttest score 
was 14.9 (standard deviation 4.2). Test scores ranged for the pretest from 9 to 25, and for the 
posttest from 4 to 21. Overall, no difference between pretest and posttest scores was found. 
Figure 5 shows in a graph the test results split for the experiment and control condition. 

 

---------------------------- 

Figure 5 about here 

---------------------------- 

 

As can be seen from the graph, there is a curious result: subjects in the control condition 
performed relatively well on the pretest. However, for this condition performance on the 
posttest was lower than on the pretest. In contrast, in the experiment condition mean 
performance increased. A one-tailed t-test of independent samples shows that the difference 
between improvement from pretest to posttest in the two conditions is statistically significant; 
(F1,24=3.21; p<.05). 

Dependent on the results of the test for discovery skills, subjects were classified into one of 
four different levels. Of the 32 subjects, 8 were classified on level 1 (the lowest level), 17 as 
level 2, 3 as level 3, and 4 as level 4 (the highest level). One implication of this result is that 
78 Percent of the subject group was not able to discover an interaction effect in data from the 
FILE task. 

In Table 1, correlations between the four knowledge measures are shown (generic 
knowledge, domain-specfic prior and posttest knowledge, and discovery skills). As can be 
seen, all between-test correlations are close to zero. In addition, for both conditions in the 
experiment correlations between pretest and posttest domain-specific knowledge test scores 
were computed. For the control condition, the result shows a correlation of 0.52, a moderately 



high pretest-posttest correlation. For the experiment condition, the correlation is -0.47, 
moderately negative. These results replicate earlier findings (Hulshof & De Jong, 2004). 

 

Process measures 

In the session in which subjects worked with the Optics simulation, 27 subjects participated, 
15 in the control condition and 12 in the experiment condition. In the experiment condition, 
one subject did not access any tips at all. Because the reason for this is unclear (which makes 
it difficult to assign the results to any of the two conditions), it was decided to discard the 
process results for this subject from the analysis. All operations subjects performed in the 
simulation were registered and available for further analysis. For the present study, two 
results are especially relevant: differences between the experimental conditions with regard to 
interaction with Optics, and the use of knowledge tips by subjects in the experiment 
condition. 

Interaction with Optics. The analysis of interaction with Optics focused on a subset of all 
possible operations: the ‘basic operations’. Basic operations are those that are central to the 
process of experimentation. Together, the basic operations constitute more than three quarters 
of all operations that subjects performed in the simulation. Three different operations were 
examined: addition of objects to the working area in the simulation, removal of objects from 
the working area, and movement of objects in the working area. On average, subjects in the 
control condition performed 70.3 (SD=43.4), and in the experiment condition 60.1 basic 
operations (SD=37.5). This difference is not statistically significant. In Figure 6, a 
comparison between the experimental conditions is shown for each of the basic operations. 

 

---------------------------- 

Figure 6 about here 

---------------------------- 

 

As can be seen from the figure, there are small but consistent differences between subjects in 
the two conditions for all three basic operations. Subjects in the control condition performed 
more basic operations than subjects in the experiment condition. This finding can be 
explained by the availability of knowledge tips in the experiment condition: the fact that 
accessing and reading knowledge tips takes time influenced subjects’ level of activity. 

Because most subjects in both conditions scored close to the mean on the different knowledge 
tests, a comparison of subjects with low or high knowledge or skill could only be carried out 
on a small number of cases. Only subjects who scored more than one standard deviation 
below or above the mean were included in the analysis. For generic knowledge, this meant 
that two groups were formed of subjects who scored below 17 (n=4) or above 25 (n=4). The 
results are shown in Figure 7. 

---------------------------- 

Figure 7 about here 

---------------------------- 



 

As can be seen in the figure, subjects with high generic knowledge were more active in 
working with the Optics simulation than subjects with poor generic knowledge. For domain-
specific knowledge, the groups were formed of subjects who scored below 12 (n=6) or above 
19 (n=5). Results are shown in Figure 8. 

 

---------------------------- 

Figure 8 about here 

---------------------------- 

 

The results are similar to the findings for generic knowledge: subjects with more knowledge 
about optics showed more activity for all basic operations. For discovery skills, the groups 
were formed of subjects who were classified at the lowest level (n=6) or at the highest level 
(n=3). Results are shown in Figure 9. 

 

---------------------------- 

Figure 9 about here 

---------------------------- 

 

The results differ from the other comparisons. Both groups performed a similar amount of 
Add and Delete operations, but subjects with high discovery skills performed much more 
Move operations than subjects with low discovery skills. 

Use of tips. In the experiment condition, subjects could access knowledge tips if they wished 
to do so. The minimum number of tips that was viewed was 1, the maximum all 9 tips. The 
average number of accessed tips was 6 (standard deviation 2.6). Table 2 shows correlations 
between performance on the different test measures and the number of tips accessed by 
subjects. 

 

---------------------------- 

Table 2 about here 

---------------------------- 

 

As can be seen from the table, there is a statistically significant correlation between domain-
specific prior knowledge and the number of tips accessed in the simulation: more competent 
subjects accessed more knowledge tips than others. Although not statistically significant, it 
can be observed that there is also a positive relation between the level of generic knowledge 
and the number of accessed tips. 

 



 

Discussion 
This study examined the effect of facilitating access to domain-specific and generic 
information during scientific discovery learning with a computer simulation called ‘Optics’. 
The study compared the interaction behavior with Optics and knowledge acquisition of two 
randomly created groups of students: one group who worked with Optics without support (the 
control condition), and one group who were supported while they worked with Optics (the 
experiment condition). The type of support used in the experiment condition was the use of a 
small set of ‘knowledge tips’, hints containing general information on the topic of the 
simulation: geometrical optics. A distinguishing feature of these tips is that they were not 
used to guide students while they explored and experimented with the discovery learning 
environment. Instead, students could decide for themselves whether or not they wanted to 
make use of the available tips. Information was available to students on a ‘just in time’-base, 
which means that it could be voluntarily accessed during learning. As a result of the relatively 
small difference between the conditions that were used in the experiment, the interaction 
behavior with Optics was similar for subjects in both the control and the experiment 
condition. Subjects in the control condition were only a little more active than subjects in the 
experiment condition. The differences can be explained by the time taken by subjects in the 
experiment condition to access and read the knowledge tips. Differences between the two 
conditions become more apparent when the results from the domain-specific knowledge tests 
are compared. Subjects in the experiment condition showed a significant learning gain from 
pretest to posttest, in contrast to subjects in the control condition who even showed a small 
decline in knowledge. This finding suggests that subjects in the experiment condition 
benefited from the availability of tips. It should be pointed out that the questions that were 
used to test for domain knowledge did not ask for information that was contained within the 
knowledge tips. Who benefits most? In the control condition, a positive correlation was found 
between performance on the pretest and posttest. In the experiment condition, a negative 
correlation was found. The positive correlation in the control condition indicates that the 
effect of working with Optics was similar for all subjects in this condition. Further analysis 
shows that the negative correlation in the experiment condition can be explained by the 
performance of a number of subjects who did poorly on the pretest but showed a large 
increase from pretest to posttest. It can be concluded that the subjects who benefited most 
from the availability of tips were those subjects who showed a low understanding of the 
domain prior to the experiment. It is interesting to note that the positive correlation between 
the number of tips that subjects accessed during the experiment and domain-specific prior 
knowledge indicates that subjects with low prior knowledge accessed fewer knowledge tips 
than subjects with higher prior knowledge. This means that in some cases, accessing only a 
few knowledge tips resulted in a large increase in performance on the posttest. 

The other tests that were administered in the experiment show mixed results. Most subjects 
performed well on generic knowledge measures, which means that they had no trouble in 
understanding the type of qualitative and quantitave relations that occur between variables in 
the Optics simulation. The relatively high level of generic knowledge may have facilitated 
understanding of the knowledge tips in the experiment condition. In contrast to the good 
results on the generic knowledge test, on the test for discovery skills most subjects showed a 
relatively poor performance. Classification of subjects was based on the number and type of 
rules they were able to discover after working with the FILE task. This showed that 78% of 



the subjects did not mention the presence of an interaction effect. Given the fact that the FILE 
task was relatively simple because its experiment space is relatively small, the learning gain 
in the experiment condition after working with the complex Optics simulation is almost a 
surprising outcome. Optics should probably not be viewed as just a complex version of the 
FILE discovery task, since FILE deals with an artificial topic and Optics deals with 
geometrical optics, a real-world topic. This may explain the absence of a relation between 
performance on the discovery skills test and knowledge gain from working with Optics. 

What this study shows is that computer simulations can be effective tools for learning, even 
when the process of discovery learning is applied to the complex domain of geometrical 
optics. The unobtrusive method of just-in-time support helps to improve the effectiveness of 
discovery learning. 
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Tables and Figures 
 

Table 1. Correlations between prior knowledge test measures 
Knowledge measure Domain posttest Generic Discovery skills 
Domain pretest .13 .27 .13
Domain posttest .04 .05
Generic .25

 

 



Table 2. Correlations between knowledge measures and the number of accessed tips 
Knowledge measure Accessed tips
Generic knowledge .39
Discovery skills -.24
Domain-specific prior knowledge .66*

Domain-specific post knowledge -.36
 

 



 
Figure 1. Example interface of the Optics simulation environment. Explanation given in text 



 
Tip Content 
1. a) A thin lens is a weak lens, a thick lens is a strong lens. 

b) Advice: Compare different lenses with each other and observe differences. 
c) Appropriate object to use: lamp with one light beam. 
d) Expected outcome: Light beams are refracted more through a thick lens than 

through a thin lens. 
6. a) When an object is standing within the focal distance of a lens, the projected 

image becomes virtual. This means that the image will lie at the left of the lens 
b) Advice: The ‘eye’ was developed for this program to show you the position and 

shape of the virtual image. Put the eye somewhere to the right of the lens. 
When the object gets near to the lens, you will see the virtual image appear. 

c) Appropriate object to use: surface with L-shaped holes, screen, lamp with three 
divergent light beams, distance measures, eye. 

Figure 2. Two example tips (tip 1 and 6), used in the experiment condition 



 

The table shows for some values the relation between variables A and B. Which description on the 
right best summarizes this relation? 
A B  Answer 
10 4  The more A increases, the slower B increases 
20 8  When A is zero, B is also zero 
30 16  The more A decreases, the faster B decreases 
60 64  The more A increases, the faster B increases 
100 1024  

 
 

-6

-4

-2

0

2

4

6

8

10

-3 -2 -1 0 1 2 3

X

Y

What type of function describes a line that goes through 
all the points in the graph on the left? 

 A quadratic function 
 A function with an asymptote 
 A monotonic decreasing function 
 A logarithmic function 

 

Figure 3. Example items from the generic knowledge test (slightly modified for legibility) 



 

 
Study the Picture. If the lens is moved a little to the left, where will the light beam cross the base line? 

 Closer to the lens 
 At the same distance from the lens 
 Further away from the lens 

 
If, in the same picture, the light beam is aimed a little up, where will it cross the base line? 

 Closer to the lens 
 At the same distance from the lens 
 Further away from the lens 

Figure 4. Example items from the domain-specific knowledge test 
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Figure 5. Comparison of the control and experiment condition for domain-specific test scores 
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Figure 6. Comparison of control and experiment conditions for basic operations in Optics 



 

Figure 7. Comparison on basic operations for low and high generic knowledge 

 



 

Figure 8. Comparison on basic operations for low and high domain-specific knowledge 
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Figure 9. Comparison on basic operations for poor and high discovery skills 
 

 


