
HAL Id: hal-00190546
https://telearn.hal.science/hal-00190546

Submitted on 23 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logo Programming and Problem Solving
Roy D. Pea

To cite this version:

Roy D. Pea. Logo Programming and Problem Solving. 1987. �hal-00190546�

https://telearn.hal.science/hal-00190546
https://hal.archives-ouvertes.fr

Logo Programming and Problem Solving

Roy D. Pea

Technical Report No. 1 2

LOGO PROGRAMMING AND PROBLEM SOLVING*, **

Roy D . Pea

Center for Children and Technology
Bank Street College of Education

In the world of educational computing, programming is a major activ-
ity, occupying several million precollege students a year in this
country alone. A s yet very little is known about what kinds of
cognitive activities computer programming requires and whether, in
the classroom contexts that are representative of microcomputer use in
schools today, children are capable of making substantial progress in
learning to program. In the cyclical program-development process of
problem understanding, program design and planning, programming
code composition, debugging, and comprehension, what gains do
children make on the many developmental fronts represented in the
complex of mental activities required by programming? Do conceptual
limitations impede their understanding of any of the central program-
ming concepts, such as flow of control structures, variables, proce-
durality, and the like? We have begun to address aspects of these
questions in our developmental research on children learning to do
Logo programming.

I would like to make five points which will be explicated in the re-
mainder of 'this paper:

1. Systematic developmental research documenting what children
are learning as they learn to program is necessary, rather than
existing anecdotes. Our studies focus on Logo because it is a pro-
gramming environment that is exciting to many educators, it has great
potential for introducing children to many of the central concepts
involved in programming and problem solving, and because grand

*Paper presented at symposium of the American Educational
Research Association, " Chameleon in the Classroom: Developing Roles
for Computers, I' Montreal, Canada, April 1983.

**The research reported in this paper was funded by the Spencer
Foundation.

claims have been made for how it promotes learning to program, as
well as metacognitive skills such as planning and strategic problem
solving.

2. Logo is cognitively complex beyond its early steps, and quite
difficult to learn without instructional guidance, even if students are
intellectually engaged with that learning. While the semantics and
syntax of Logo are readily learned, the pragmatics--how to arrange
lines of legal programming code to achieve specific ends--is a great
challenge.

3 . The pedagogical fantasy (e. g., Byte, August 1982; Papert,
1980)--that Logo can serve as a stand-alone center in classrooms for
learning programming and thinking skills--does not work. Teacher
training will be necessary for programming skills to develop very far,
and problem-solving skills may need to be taught directly rather than
assumed to emerge spontaneously from learning Logo.

4. After a year's experience of programming in Logo, following
the discovery-learning pedagogy advocated for Logo, two classes of
25 children (8- to 9-year-olds, 11- to 12-year-olds), each with six
computers, did not display greater planning skills than a matched
group who did not do Logo programming.

5. We need to develop an instructional science for programming
if that is what we wish children to learn, but we also need to re-
think, in ways suggested by Midian Kurland, the educational goals
that programming is meant to fulfill.

The great excitement in education about children's learning to pro-
gram with microcomputers is easy to understand. But it is of partic-
ular interest to me as a developmental psychologist that such excite-
ment has had less to do with the practical value of learning how to
write programs for specific applications than with the belief that,
through learning to program, children will develop powerful cognitive
skills such as planning abilities, problem-solving heuristics, and
reflectiveness on the revisionary character of problem solving itself
(Pea & Kurland, 1983). This idea--that programming will provide
exercise for the highest mental faculties, and that the cognitive
development thus assured for programming will generalize or transfer
to other content areas in the child's life--is a great hope. Many
elegant analyses offer reasons for this hope, although there is an
important sense in which the arguments ring like the overzealous
prescriptions for studying Latin in Victorian times.

Programming is viewed by many of its devotees as a "Wheaties of the
Mind," a panacea for the ambiguities of everyday cognition. It is
alleged that in the demands which programming activities make on the -
mind--of precision (in requiring a specific sequence of instructions
for controlling the operations of the computer); of problem decomposi-
tion (into component subproblems); and of debugging (systematic -
efforts to eliminate discrepancies between the intended outcomes of
the program and those brought about through the current version of
the program)--programming renders salient the general utility of such
cognitive activities in problem-solving efforts, and that such gener-
alizations will be made spontaneously by the programmer to problem
spheres above and beyond the microcomputer environment (Feurzig et
al., 1981; Minsky, 1970; Papert, 1980). To place these claims in a
larger context, we may note their similarity to claims about how
literacy, or mathematics, or logic serve as "cognitive amplifiers, 'I
enabling the users of such technologies to transcend' the limitations of
their previously available tools of thought (Bruner, 1966; Cole &

Griffin, 1980; Goody, 1977; Olson, 1976).

What has been done to evaluate the empirical validity of these impor-
tant claims? While Papert and colleagues undertook extensive studies
of children doing Logo programming in the Brookline school system,
their reports 'of this _work were principally qualitative in nature,
citing and discussing some of the programs that were created by the
children, the global differences in programming style that seemed to
be intuitively distinguishable (Watt, 1979), and dramatic case studies
of great prog'ra&ming progress made by children who had learning
difficulties (e. g . , Weir, 1981) .
Though interesting, these reports do not directly address the widely
touted claims for the development of thinking skills that transcend the
programming context, for which case-study methods are inappropri-
ate. We thus undertook a series of investigations in order to provide
systematic data on children learning to program and the alleged
cognitive outcomes of such programming, such as developments in
planning skill. Methodologies for addressing these questions were
developed, and summaries of some key research findings to date are

' presented below.

Research

I will briefly review three of our studies. Detailed technical reports
will be available in the near future. The first was a study of the
level of programming expertise that children had developed by year's
end; the second consisted of systematic probes of the depth of under-
standing of programming concepts such as "recursion" in studies with

individual children; and the last asked whether children doing pro-
gramming developed planning skills that they then spontaneously
transferred beyond programming.

In one study, we presented children with a 3-part written assessment
of programming. The three parts, each taking 45 minutes, were:
(1) Logo command understandinq, where children were asked to fill
in, with graphics or words, what would happen on the screen when
specific commands were typed and entered into the computer;
(2) writing Logo programs to draw shapes, with constraints as to
what programming constructs (e. g . , tail recursion, variable) were to
be used; and (3) finding the errors or bugs in prewritten programs
intended to achieve a pictorially specified goal. For command under-
standing, we found that, although the number of hours spent pro-
gramming by the older (25 hours) and younger (29 hours) groups
were not significantly different, the older group understood signif-
icantly more commands than the younger children. Boys spent more
hours programming (34 vs. 22 for girls), and outscored the girls on
nearly every class of programming commands. Performance on this
command comprehension task was revealing: out of 100 possible
points, the mean score for commands understood in terms of this
measure was 34, with a huge standard deviation of 25, and only three
out of the 50 children scored between '75 and 95. Roughly one-
quarter of the children in each of the classes had not become very
much involved in the classroom programming and did correspondingly
poorly. In the case of writing different programs that would each
draw a 'box of a certain size, we found that, while few children had
difficulty writing a program consisting of a chain of direct commands
(FD, RT) or a tail recursive procedure, many children could not
write a version of such a program using a variable, or a version of
the tail recursive program with a conditional test that would stop the
drawing. In the area of debugging, many children were able to
locate and eliminate "surface" errors of syntax, or missing variable
values, but very few found procedural errors in which the order of
lines in a program was mixed up.

The second study (Kurland & Pea, 1983) utilized a series of increas-
ingly complex Logo programs that were designed to reveal the depth
of understanding of recursion in a half dozen of the best program-
mers in the two Logo classrooms. The method we used--having
children read through the programs line by line and make predictions
as to what would happen when each line of programming code was
executed--was extremely telling, and confirmed our classroom obser-
vations. Four prevailing tendencies are of central developmental
significance. One was to treat the program as akin to natural lan-
guage text, ambiguous in meaning and "ignorable" by the computer if

the child did not understand it. A second was the fact that some
children did not understand conditional test statements in these
programs even though they had written programs that contained
them. This is a robust finding, as other studies with these children
have shown; the children's programs often displayed production
without comprehension, in that programming constructs such as
variables, test statements, or even simple commands like "repeat" may
have been used in one program, but not understood in another. Rote
use of ~chunksn from other children's programs or those of the
teacher seems to be responsible for this rigidity of use. A third
tendency was to violate the sequentiality of program execution, to
assume that, without instructions to do so, the computer could "jump"
some lines in the program to execute other lines. The fourth tend-
ency, common to all the children, was to manifest a misguided mental
model of how recursion works, one which is insurmountable without
instruction since, for recursion, evidence for how control is passed in
Logo (i.e., which line is to be executed next) is not discoverable in
the surface structure of the language.

The third study was a longitudinal pre-post investigation of groups of
children who were provided with extensive opportunity to program in
the h g o language over a school year. These children were then

.compared to a matched group of nonprogramming students to see
whether learning to program enhanced the development of planning
skills. The task, administered before and after the year of program-
ming, was a classroom chore-scheduling task that allowed children
multiple opportunities to come up with the shortest plan they could
construct for carrying out a series of chores. Our expectation was
that better planners would take a more strategic approach to the
task, revise or debug their plans more effectively, and engage in
more executive and metacognitive decision making as they developed
their plans (Hayes-Roth 81 Hayes-Roth, 1979; Pea, 1982) . On a large
number of measures--the efficiency of the plans, the quality of the
revisions, and the types of decisions made during the planning proc-
ess--we found no differences between the programming and nonpro-
gramming groups at either age.

Why did we find no cognitive benefits on our task for those children
who had been doing Logo programming for a year? Advocates of the

. . cognitive benefits of programming might object that our treatment was
not of sufficient duration for benefits to be manifested, or that
benefits could be revealed in later years, but not so soon after the
"treatment" provided by Logo.

However, we favor an interpretation
findings in cognitive science during

+ "

more in keeping with two general
the past decade, and with addi-

tional observations of the children in our planning task while pro-
gramming. The first finding is that transfer of problem-solving
strategies. between dissimilar problems, or problems of different
content, is notoriously difficult to achieve even for adults (Gick &
Holyoak, 1980; Hayes & Simon, 1977; Tuma & Reif, 1980). The
second finding is that, even among computer science students in
college who, by their junior year, have had several thousand hours
of programming study (as contrasted with about 30 hours for our
student groups), great conceptual difficulties in understanding how
even brief programs are working persist (Soloway et al., 1982),
which one would not predict if planning and problem-solving skills
had achieved such extensive development by virtue of programming
experience.

Our in-class observation had to do with whether children plan prior
to programming. It has been an assumption of those expecting trans-
fer of planning skills developed within programming to domains out-
side programming that, in fact, planning skills are at least developed
in programming. But we found very little preplanning activity.
Planning a program by specifying the high-level logic that a program
would be written to implement was not a distinct component of the
children's program development process. Much more common was
on-line programming, in which children defined their goals, and found
means to achieve them as they observed the products of their pro-
grams unfolding on the screen. Rather than constructing a plan,
then implementing i t as a program to achieve a well-defined goal, and
afterwards running the implemented plan on the computer, children
would evolve a goal while writing lines of Logo programming language,
run their program, see if they liked the outcome, explore a new goal
if they did not like the outcome by writing a new programming code,
and so on. It might be objected that, although they engaged in little
top-down planning, they did work a great deal on plan revisions by
continually adapting their programs, revisions being central to plan-
ning activity (Pea, 1982). If this is so, we should have seen differ-
ences between the programming classes and the control classes in
planning revisions during the noncomputer planning task, but we did
not. And program debugging in the classrooms would have been very
common. In most cases, children preferred to rewrite a program from
scratch rather than to suffer through the attention to detail required
in figuring out where a program was going awry. A s one child put it
when asked why she was typing in commands directly rather than
writing a program: "It's easier to do it the hard way." Debugging
requires precision and line-by-line program comprehension; in gener-
al, both were difficult for the school-aged children to attain after a
full year. They certainly were not automatic consequences of expo-
sure to Logo.

While we believe that, on the basis of these findings, it would be
premature to discard programming or Logo from the set of microcom-
puter uses in schools, these studies do raise serious doubts about the
sweeping claims made for the cognitive benefits of learning to pro-
gram, particularly in Logo (see Byte, August 1982). We find that
the entry level of Logo--getting the turtle to carry out mathematically
interesting drawings through writing short programs consisting of one
or two procedures--does not present conceptual problems for the
school-aged child. Far from being problematic, one finds in most
children just the mental engagement that advocates of Logo highlight.
But the elegance and beauty of Logo that derives from its parent
language, LISP, used in artificial intelligence, its procedurality which
allows one to define new procedures and use them as building blocks
in increasingly complex programs, its control structures that allow
very brief recursive programs that can solve quite difficult problems,
the use of conditional tests--all these features present deeply chal-
lenging conceptual problems on a turf our children did not opt to
travel during their discovery learning. With thoughtful instruction,
which will require developmental research for its design, we expect
that Logo may provide a good window for the child into these impor-
tant computational concepts. With accompanying instruction in think-
ing skills (see, for example, Chipman, Siegel & Glaser, 1983), per-
haps using Logo or other programming languages as a vehicle for dis-
cussing heuristics and problem-solving methods, developments in
plannirlg skill may in fact be achieved. But we have deep doubts,
based on a series of empirical studies over an 18-month period, that
the Logo ideal is attainable with its discovery-learning pedagogy.

References

. . Bruner, J . S. On cognitive growth. In J. S. Bruner, R. R . Olver,
P. M. Greenfield (EDs.) , Studies in cognitive growth. New

York: Wiley, 1966.

Chipman, S. , Siegel, J . , & Glaser, R. (Eds.) , Thinking and learning
skills: Current research and open questions. Hillsdale, N J :
Erlbaum, 1983. In press.

Cole, M. , & Griffin, P. Cultural amplifiers reconsidered. In D. R .
Olson (Ed.), The social foundations of language and thought:
Essays in honor of Jerome S. Bruner. New York: Norton, 1 9 8 0 .

Feurzig, W . , Horwitz , P. , & Nickerson, R. S. Microcomputers in
education (Report No. 4798). Prepared for: Department of
Health, Education, and Welfare; National Institute of Education;
and Ministry for the Development of Human Intelligence, Republic
of Venezuela. Cambridge, MA: Bolt Beranek & Newman, October
1981.

Gick, hi. L. , & Holyoak, K. J. Analogical problem solving. Cogni-
tive Psychology, 1980, - 1 2 , 306-355.

Goody, J. The domestication of the savage mind. New York:
Cambridge University Press, 1977.

Hayes, J. R. , & Simon, H . A. Psychological differences among
problem isomorphs. In N. J. Castellan, Jr., D. B. Pisoni, &

G. R. Potts (Eds.), Cognitive theory (Vol. 2) . Hillsdale, NJ:
Erlbaum, 1977.

Hayes-Roth, B. , & Hayes-Roth, F. A cognitive model of planning.
Cognitive Science, 1979, - 3 , 275-310.

Kurland, D . M. , & Pea, R. D . Children's mental models of recursive
Logo programs. Proceedings of the Fifth Annual Cognitive
Science Society, Rochester, New York, 1983.

Minsky, M . Form and content in computer science. Communications
of the. ACM, 1970, 17, 197-215.

Olson, D. R. Culture, technology and intellect. In L. B. Resnick
(Ed.) , The nature of intelligence. Hillsdale, N J : Erlbaum, 1976.

Papert, S. Mindstorms. New York: Basic Books, 1980.

Papert, S. , Watt, D. , diSessa, A. , & Weir, S. .Final report of the
Brookline LOGO Project: An assessment and documentation of a
children's computer laboratory. Cambridge, MA: MIT Division
for Study and Research in Education, 1979.

Pea,

Pea,

R. D. What is planning development the development of? In
D. Forbes & M. Greenberg (Eds.) , New directions in child
development: Children's planning strategies (Vol. 18). San
Francisco, CA.: Jossey-Bass, 1982.

R. D . , & Kurland, D . M. On the cognitive and educational .
benefits of teaching children programming : A critical look. - New
Ideas in Psychology, 1983, - 1 (3) . Elmsford, NY: Pergammon.
In press.

Soloway, E. , Ehrlich, K. , Bonar, J. , & Greenspan, J. What do
novices know about programming? In B. Shneiderman & A.
Badre, (Eds.) , Directions in human-computer interactions.
Hillsdale, N J : Ablex, 1982.

Tuma, D. T. , & Reif, F. (Eds.) . Problem solving and education:
Issues in teaching and research. Hillsdale, N J : Erlbaum , 1980.

Watt, D. A comparison of the problem solving styles of two students
learning LOGO: A computer language for children. Proceedings
of the National Educational Computing Conference, 1979, 255-260.

Weir, S. LOGO as an information prosthetic for the handicapped
(Working Paper No. 9) . Cambridge, MA: MIT Division for -
Studies and ~ e s e a r c h in Education, May 1981.

