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ON THE COGNITIVE PREREQUISITES OF LEARNING 
COMPUTER PROGRAMMING* 

Roy D. Pea and D .  Midian Kurland 

Introduction 

Training in computer literacy of some form, much of which will consist 
of training in computer programming, is likely to involve $3 billion of 
the $14 billion to be spent on personal computers by 1986 (Harmon, 
1983). Who will do the training? "hardware and software manu- 
facturers,  management consultants, -retailers,  independent computer 
instruction centers, corporations' in-house training programs, public 
and private schools and universities, and a variety of consultants1' 
(ibid., - p. 2 7 ) .  To date,  very little is known about what one needs 
to know in order to learn to program, and the ways in which edu- 
cators might provide optimal learning conditions. The ultimate suc- 
cess of these vast  training programs in programming--especially 
toward the goal of providing a basic computer programming compe- 
tency for all individuals--will depend to a great degree on an ade- 
quate understanding of the developmental psychology of programming 
skills, a field currently in its  infancy. In the absence of such a 
theory, training will continue, guided--or to express  i t  more aptly, 
misguided--by the tacit Volk theories1' of programming development 
that until now have served as the underpinnings of programming 
instruction. Our paper begins to explore the complex agenda of 
issues, promise, and problems that building a developmental science 
of programming entails. 

Microcomputer Use in Schools 

The National Center for Education Statistics has recently released 
figures revealing that the use of micros in schools tripled from Fall 
1980 to Spring 1983. The outcome of that leap. is that there are now 
120,000 microcomputers for students in 35% of the country's public 

*The work upon which this publication is based was performed 
pursuant to Contract No. 400-83-0016 of the National Institute of 
Education. It does not,  however, necessarily reflect the views of 
that agency. 



schools: 22% of these are in elementary schools, and 64% are located 
in secondary schools (Reed, 1983). A staggering 4.7 million precol- 
lege students worked at computer terminals during the 1981-1982 
school year. Yet the National Education Association reported in 
March 1983 that just 11.2% of the country's public school teachers use 
computers in teaching. 

Problems with Questions of the "Cognitive Demands" of Programming 

A common set of questions voiced by  those wishing to learn computer 
programming (but  perhaps as commonly voiced by those offering 
programming training or courses) is: "What do I need to know in 
order to learn to prsgram?"Do I need to be good at mathematics? 
If I'm not, can I still learn to program?" "Do I need to be a highly 
developed logical thinker?" h the academic community, these ques- 
tions get expressed in the jargon of the social sciences: "What are  
the cognitive demands of programming?" o r  What  mental abilities 
are  cognitive prerequisites for learning to program?" or "Are there 
individual differences in programming skill development?" The com- 
mon dear for the  individual who would Like to learn programming, and 
the concern of educators and employers (frequently motivated by 
cost effectiveness), is  that there are  some persons who are  either not 
capable of being trained to program, or  who are  not "developmentally 
ready" that they need to learn or  know more fundamentally rele- 
vant things before embarking on the task of learning to program. 
While these questions a re  subject to empirical analyses, we have found 
in reviewing the literature that the uses of such empirical analyses 
are often quite pernicious. If persons do not get a high enough 
score. on a "programming aptitude measure," they may be denied 
educational o r  employment opportunities. One s tudy is quite explicit 
on the uses to which they believe such findings should be put--£or 
student advising and placement: 

The rapid increase in the need for personnel in these areas 
is attracting many individuals needing education, and - the 
number who will not succeed with this education will in- 
crease.. . .The increase in the number of such students is 
already being observed by many schools, resulting in the 
use of relatively scarce faculty resources to educate indi- 
viduals who will not successfully complete a technical 
course, while keeping out students who might succeed if 
permitted to enroll. (Wileman. Konvalina & Stephens, 1981, 
p .  226;  our  emphases) 

Fowler & Glorfeld (1981, p .  96) note that "the need t~ identify a 
potentially successful student is very important for reasons such as 



early counseling into an appropriate career path and formation of 
honors  section^.^ In another s tudy,  Newstead (1975, p.  89) goes so 
far as to say that 'lone can conclude that programming ability (as  
measured in this s tudy)  may be much more innate than 'business 
training course spiels' would have one believe. Anyone cannot be a 
programmer [sic] . 
The logic of these approaches is not hard to follow. Let the rich get 
richer, while the poor recede into the nontechnical background of 
society. Never mind that i t  may be possible to instruct "those who 
will not succeed" in another way (and the pedagogical alternatives for 
learning to program are  many and diverse [Lemos, 1975, 1980; 
Papert, 19801 ). Instead, assume that "this education" that they will 
not succeed with is immutable and adequate for anyone wishing to 
learn to program only they had the right s tuff .n  While some may 
have felt that this attitude had some justification when programming 
was an optional activity (something one could, but need not do ) ,  i t  is 
a problem of great seriousness today, since a t  least a basic under- 
standing of (modicum of competence in) how to write and understand 
computer programs is at the core of the needs for any member of a 
computer literate society (e.  g . , Sheil, 1981a, 198 1b) . We cannot 
continue to dismiss those who have difficulties in learning to program 
as  flies in the ointment of a well-oiled training machine. Instead, we 
are  obliged to try out o r ,  if necessary, develop new means for in- 
struction that  allow all an equal opportunity to learn about and par- 
ticipate in the computational powers of a technological society, one 
which has an impact on and will continue to have an even greater 
impact on the educational, work, and family lives of members of our 
society. 

Overview 

In preparing 
the available 

this report ,  we found that when we critically considered 
literature that aims to address the relationships between 

nprogramming aptitude" and interests of individuals and their pro- 
gramming performance, the static nature of these studies was appar- 
ent in that the research questions asked have not varied substantially 
in nearly 30 years. ~ v k r  since the 1950s. when the Programmer 
Aptitude Battery was developed by IBM to help select programmer 
trainees, consistently modest correlations (a t  their best from 0 . 5  to 
0 .7 ,  hence accounting for only a quarter to a half of the variance) , 
and in many cases much lower, have existed between an individual's 
score on such a measure and hs  or her assessed programming skill. 
In addition, ever since the 1950s. global measures of programming 
skill, such as grade in a programming training course or supervisor 
r a n h n g ,  have served as skdl assessments. Studies in 1983 still take 



for granted the utility of this multivariate approach, and offer no 
greater insights--certainly none that are  instructionally relevant--into 
what makes a successful programmer than they did three decades ago. 
The same is t rue of interest  measures and programming skill assess- 
ments. These studies always ask whether particular ap titude vari- 
ables have an effect on programming success, rather than the more 
fundamental psychological question of how they might have such 
effects, in terms of component skills or knowledge representations 
mediating specific programming activities. 

Given these insufficiencies, we must often step back during the 
course of our review and survey the presuppositions that have guided 
this Line of research, asking whether they are  warranted, culling 
from the research Literature the few studies that suggest new and 
promising directions, and asking many more questions than we are 
able to answer on the basis of available evidence. While the dearth 
of answers to these questions is at times disconcerting, we feel that a 
groundclearing is in order.  The available foundations are unstable, 
so we must uproot them in a search for new metaphors, new ways of 
seeing what programming is that people may learn to do i t ,  and what 
i t  is about people that they are  able to do programming. Since the 
available programming aptitude literature is built upon such ques- 
tionable foundations, a point-by-point review of thls literature in 
terms of subject populations, specific measures, and correlations 
obtained is not useful, although we will provide brief surveys and 
extensive citations of the hundred or  so studies of this kmd. On the 
other hand, we are  heartened by  some recent studies on the cognitive 
psychology of programming that begin to unravel the complex of 
mental activities essential to programming. In our  intellectual travels 
through the development of programming skills, we become more and 
more compelled by the importance of one dominant motif: the role of 
purpose and goals in programming. What one needs to know in order 
to program will depend in fundamental ways on one's programming 
goals. This point has repercussions all the way from how one does 
programming instruction, to what kinds of programming instruction 
are selected on the basis of the educational values and goals that 
define one's programming pedagogy. To take a simple example: 
documenting a program and the mental skills that  a re  required may be 
unnecessary for a single-use program for oness home computer sys- 
tem. But it is a central concern if one requires a program for the 
public domain that is understandable and rnaintainabae by  others. So 
w e  will ask not,  "What are  the cognitive demands of computer pro- 
gramming?" as if programming were a unified homogeneous activity 
(which we challenge below ) , but ra ther ,  I' What are the cognitive 
demands of doing computer programming activity X with goal Y?" 



With these provisos in mind, we will  now begin to develop the ground 
raising which we have promised. 

Background Issues 

What Is Computer Programming? 

We will define the core sense of ncomputer programming" as that set  
of activities involved in developing a reusable product consisting of a 
series of written instructions that make a computer accomplish some 
task. It is interesting to note that,  although the sense of "computer 
programming" has not varied in nearly four decades, the set of 
activities involved in doing programming has undergone major quali- 
tative transformations. In the early days of programming, for ex- 
ample, the programmer had to know the details of the computer 
hardware in order to write a program that worked; today this is no 
longer true. An important consequence of this evolution of the set of 
activities that constitutes programming is that the "cognitive demands" 
made by computer programming needs specification at the level of 
programming subtasks,  or  component activities. Therefore, we must 
ask about the variety of cognitive activities involved in computer pro- 
gramming as it is carried out today, and especially as i t  is  carried 
out by children as they attempt to master this complex skill. 

From our own work as well as  our reading in the literature on pro- 
gramming, we find that a t  least four distinct levels of computer pro- 
gramming ability can be identified. While these levels represent pure 
types and are not characteristic of a single individual, they do cap- 
ture some of the compleldty of what it means to learn to program. 
While we will take up the issue of levels of programming skill devel- 
opment in more detail below, i t  is important in attempting to build an 
adequate characterization of the programming process to bear in mind 
the range of abilities included under the heading of "being able to 
program. 

Level I: Program user.  Before learning how to program, one 
typically learns to execute already written programs such as games, 
demonstrations, or  CAI lessons. What is learned at this level is not' 
trivial (i. e . ,  what the re turn  key or the reset key does, how to boot 
a disk, how to use a screen menu), but gives no information to the 
novice on how a computer program works o r  even that there is a 
program controlling what happens on the screen. Many adult com- 
puter users never advance past this level. One does not need to 
know about programming to be a word processor operator, make 
airline reservations, process payroll checks, design a budget, or do 
any of a growing number of computer-based activities. However, 



Level I users remain at  the mercy of the program they are using and 
are powerless to effect changes in it .  While i t  can be argued that as  
programs get bet ter ,  there will be less need for  the average person 
to make programming changes, we would argue that without some 
familiarity with programming, the user is less likely to appreciate 
fully the power and potential of this technology. In addition, without 
some appreciation of programming, the user is not likely to take full 
advantage of optional parameters built into sophisticated application 
programs which themselves constitute a high-level form of program- 
ming. 

Level LI: Code generator. At this level the s tudent  knows the 
syntax and semantics of the more common commands in a language. 
The user can read someone else's program and know what each line 
accomplishes. The student can locate bugs that prevent commands 
from being executed (e. g. , syntax e r r o r s ) ,  can load and save pro- 
gram files to and from an external storage device, and can write 
simple programs that he o r  she has seen previously. When program- 
ming, the student does very little preplanning and does not both& to 
document his o r  her  program. There is no effort to optimize the 
coding, use e r ro r  t raps ,  or make the program user-friendly and 
crash resistant. A program at this level might simply consist of 
printing the s tudent 's  name over and over on the screen or drawing 
the same shape repeatedly in different colors. The student operates 
at the level of the individual command and does not use subroutines 
or procedures created as  par t  of other programs. 

Level III: Program generator. At this level, the student has 
mastered the basic commands and is thinking in terms of higher level 
units. Sequences of commands that accomplish program goals a re  
known (e.g., locate and verify a keyboard input,  sort  a list of names 
or  numbers, read data into a program from a separate file). The 
student can now read a program and say what the goal of the pro- 
gram is,  what functions different par ts  of the program serve, and 
how the different par t s  a re  linked together. The student can locate 
bugs that prevent the program from functioning properly (e. g. , a 
sort routine that  fails to correctly place the last item in a list) or 
bugs which cause the program to crash as a result of unanticipated 
conditions or inputs (e. g. , a division by zero er ror  when the pro- 
gram is instructed to find the mean of a null l is t ) .  The student can 
load, save, and merge files, and can do simple calls to and from files 
inside the main program. The student may be writing fairly lengthy 
programs for personal use,  but the programs tend not to be user- 
friendly. While the student sees the need for documentation, he or  
she does not plan programs around the need for careful documentation 
so that the program may be maintained by others. Within this gener- 



a1 level, one can identify many sublevels of computer programming 
slull . 

Level IV: Software developer. At t h s  level, the student is 
ready to write programs that are  both complex and are  intended to be 
used by others. The student now knows several languages and has a 
full understanding of all their features and how the languages inter- 
act with the host computer (e. g. ,  how memory is allocated, how 
graphic buffers can be protected from being overwritten, how periph- 
eral devices can be controlled by the program). When given pro- 
grams to read, the student can scan the code and simulate mentally 
what the program is doing, see how the goals are achieved and ,  most 
likely, how the programs could be better written or adapted for other 
purposes. The s tudent  now writes programs with sophisticated error  
traps and built-in tests to aid in the debugging process and to 
ensure that the program will be reliable, provable, and maintainable. 
In addition to writing code that accomplishes the program's objective, 
the student can optimize coding to increase speed and minimize the 
amount of memory required for running. To decrease the time needed 
to write programs, the  student will draw heavily on software libraries 
and programming utilities. Finally, the student will often design the 
program before generating the code,' will document the program fully, 
and will write the program in a structured fashion thus malung i t  
easy for others to read and/or  modify. Major issues in software 
engineering at this level of expertise a re  discussed by Thayer,  
Pyster and Wood (1981). 

There are many methodological problems with assessing computer 
programming abilities across these four major levels and their many 
sublevels. While psychological studies of expert  and novice pro- 
grammers have revealed some efficient measures that exploit the 
differences in programming-specific problem-solving strategies--spe- 
cifically , debugging (Jeffries, 1982) and program memory organization 
(diPersio et al.,  1980)--determining whether or not a person can 
program at some specified level of expertise remains a difficult task. 

Demands of Learning to Program: The Problem of Differentiation 

The question of the cognitive demands of computer programming is an 
enormously complex one, because nprogrammingn is not a unitary 
sh l l .  Like reading, i t  is comprised of a large number of abilities 
that interrelate with the organization of the learner 's  knowledge base. 
memory and processing capacities, repertoire of comprehension strate- 
gies, and general problem-solving abilities. In addition, a program- 
mer may be highly developed in some aspects of programming but not 
in others. For example, it is not uncommon to find programmers who 



can write highly efficient and elegant code, but not code that can be 
understood or  maintained by other programmers. Typically, in re-  
search on the psychology of computer programming, "learning to 
program" has been equated with learning the syntax and the defini- 
tion of commands in a programming language, just as reading is often 
equated with skill in decoding. However, once past the initial level 
of skill acquisition, what we mean by "readingn is  actually reading 
comprehension, which entails an  elaborate body of world knowledge, 
comprehension monitoring, inferencing , hypothesis generation, and 
other cognitive and metacognitive strategies that take years to devel- 
op fully. This lesson has been etched in high relief through the 
intensive efforts necessary to develop artificial intelligence systems 
that "understandn text (e. g . , Anderson & Bower, 1973; Schank, 
1982; Schank & Abelson, 1977). Skilled reading also requires wide 
experience with different types of texts (e. g . , narrative, essays, 
plays, poetry, debate, biography) and with different goals of the 
reading activity (such as  reading for meaning, content, style, pleas- 
u re ) .  Skilled computer programming is similarly complex and context- 
dependent, which makes the problem of assessing the cognitive de- 
mands of nlearning to program'' all the more acute. 

This issue of "cognitive demandsn and the corresponding problem of 
selecting components of the question that a re  researchable has been a 
general one. The idea that some development may serve as a neces- 
sary prerequisite for some other development i s  familiar from the 
Literature of moral reasoning (e. g . , Tomlinson-Keasey & Keasey , 
1974), language development ( e .g i ,  Sinclair, 1969; Slobin, 1973, 
1982) and, more generally, from the "invariantn developmental stage 
sequence arguments offered by Piaget as central to his structuralist 
developmental theory. This approach to the cognitive demands of 
programming has recently begun to be applied to programming as well 
(Favaro, 1983). In each case, the empirical testing of the prereq- 
uisite character of some specific cognitive achievement for some other 
cognitive achievement has depended on a refinement of the general 
question into specific questions that a re  empirically researchable. 
Rather than asking, as  in the early days of the cognitive prerequisite 
controversy in developmental psy cholinguistics--I1 Daes language learn- 
ing require prior concept development for the ideas expressed in 
language?"--current language development research recognizes that 
such a question must be asked for specific language constructions or  
subparts of language, and that the answer will depend on the lin- 
guistic forms chosen (e. g .  , Johnston, 1982) .  W e  will urge a similar 
differentiation for questions about the "cognitive demands" o r  "pre- 
r e q u i s i t e s b f  learning to program--cognitive prerequisites in order to 
do what specifically in programming? 



What Programming Is as  a Cognitive Activity 

In this section, we first outline recent findings about the cognitive 
psychology of expert  programming, then provide a brief account of 
available theories of the cognitive subtasks involved in programming, 
describe existing accounts of what "learning to program" involves, 
and then critique the popular accounts of what learning to program 
requires. 

One can begin to analyze what programming skill is as a cognitive 
activity by engaging in detailed analyses of what expert programmers 
do, and what kinds and organizations of knowledge they appear to - 
have stored in memory in order  to do i t .  This research strategy has 
revealed significant general features of expert  problem-solving com- 
petence and performance for a wide variety of other subject domains 
such as algebra (Lewis, 1981), chess (Chase & Simon, 1973), geome- 
try (Anderson, Greeno, Kline & Neves, 1981), physics (Chi, Felto- 
vich & Glaser, 1981; Larkin, McDermott, Simon & Simon, 1980), 
physical reasoning (deKleer & Brown, 1981), and writing (Bereiter & 

Scardamalia, 1982), and i t  has begun to provide some insights into 
the components of programming skill. 

Recent studies of programmers suggest that high-level computer 
programming skill is characterized by a giant assembly of highly 
specific, low-level knowledge fragments (Brooks, 1977; Atwood & 

Ramsey , 1978). For example, the design of functional "programmer's 
apprenticesn such as  Barstow's (1979) Knowledge Based Program 
Construction, and Rich and Shrobe's "Lisp programmer's apprentice" 
(Rich & Schrobe, 1978; Shrobe, Waters & Sussman, 1979; Waters, 
1982), and the MEN0 Programming Tutor (Soloway, Rubin, Woolf, 
Bonar & Johnson, 1982) has  involved compiling a "plan library" of the 
basic computer programming schemas , I' o r  recurrent functional 
chunks of programming code that programmers a re  alleged to use. 

There is some behavioral evidence from studies of programmers that 
supports these rational and introspective analyses of "chunks" of 
computer programming knowledge. Eisenstadt, Laubsch and Kahney 
(1981) have developed a Logo-like software programming language 
called SOLO and used i t  to introduce computer-naive college psychol- 
ogy students to computer programming. In an analysis of novice 
student programs, they found that most programs were constructed 
from a small set  of basic program schemas comparable to the "plan 
library" of Schrobe et  al. (1979). Jeffries (1982 ) ,  in a comparison of 
the debugging strategies of novice PASCAL programmers and graduate 
computer science s tudents ,  found that "experts saw whole blocks of 
code as 'instantiations' of well-known problems" such as " calculating 
change. I' 



Soloway and his colleagues (Bonar, 1982; Ehrlich & Soloway, 1983; 
Johnson, Draper & Soloway, 1983; Soloway & Ehrlich, 1982; Soloway, 
Ehrlich, Bonar & Greenspan, 1982; also see Kahney & Eisenstadt, 
1982) have begun to construct a "plan-based theory of computer 
programming"which also postdates  the use of recurrent plans as 
n c h u n k ~ "  in program composition. Such plans were identified in 
preliminary analyses of programs written by PASCAL novices (e .g . ,  
the "counter variable plan").  What is missing here,  for our pur- 
poses, is a ~ e n e t i c  account of the construction of such plan schemas 
from programming instruction, experience, and prior knowledge that 
is brought to the task of learning to program. (For the interested 
reader, a general account of schema theory in cognitive science is 
provided by Rumelhart, 1980. ) 

A second, related characteristic of computer programming skill is the 
large number of component rules that underlie an expert ' s  generation 
of programming problem solutions. In an analysis of one program- 
mer's work on 23 different problems, Brooks (1977) demonstrated in a 
detailed model that about 104 rules were necessary to generate the 
protocol behavior. Further ,  Green and Barstow (1978) note that over 
a hundred rules for mechanically generating simple sorting and 
searching algorithms- (e. g . , Quicksort) are  familiar to most pro- 
grammers. 

A third characteristic of computer programming skill is the ability to 
construct detailed mental models of how the computer is functioning 
when a computer program is running (Sheil, 1980, 1981a). The 
expert programmer can build dynamic mental representations, o r  
"runnable mental modelsn (Collins & Gentner , 1981) in which they can 
simulate computer operations in response to specific problem inputs.  
Brooks (1977) has  characterized these mental operations as "symbolic 
executions."The complexities of such dynamic mental models a re  
revealed when skilled programmers gather evidence for program bugs 
and simulate the program's actions by hand (Jeffries, 1982). We 
should note that  not a l l  aspects of program understanding are medi- 
ated by hand simulation; often experts engage in a prior global 
search for program organizational s t ruc ture ,  a s t rategy akin to that 
of expert text readers (Brown, 1983b; Brown & Smiley, 1978: Spiro, 
Bruce & Brewer, 1980) and guided by adequate program documenta- 
tion. 

Expert programmers not only have more information about the com- 
puter programming domain, but remember larger,  meaningful chunks 
of information that enable them to perceive programs and remember 
them mote effectively than novice programmers. The classic Chase 
and Simon (1973) finding of short-term memory advantages for chess 



experts over novices for meaningful chessboard configurations but not 
for random configurations has been repeatedly replicated for the 
domain of computer programming (Curtis, Sheppard, Milliman, Borst & 

Love 1979; McKeithen, Reitman, Rueter & Hirtle, 1981; Norcio & 

 erst, in press;  Sheppard, Curtis,  Milliman & Love, 1979; Shneider- 
man, 1977). For example, McKeithen et al. (1981) used the Reitman- 
Rueter (1980) technique for inferring individual subjects'  chunking of 
key ALGOL programming concepts in memory from recall orders to 
discover the specifics of memory organization that may facilitate this 
performance difference. They found extensive differences in the 
mnemonic strategies used by beginning, intermediate, and expert 
ALGOL programmers to memorize ALGOL keyword stimuli. Notably, 
experts clustered the keyword commands according to meaning in 
ALGOL (e.g. ,  those functioning in loop statements),  whereas novices 
clustered according to a variety of surface ordinary language associ- 
ations (such as orthographic similarity and word length) ,  with inter- 
mediates somewhere in between. In a related finding, Adelson ( 198 1) 
presented computer programming novices and experts  with a recall 
task in which stimuli were lines of programming code which could be 
organized either procedurally (into programs) or syntactically (in 
terms of order relationships between different control phrases of the 
computer language). She found that experts recalled program lines 
"in the order in which they would have been evaluated in a running 
program, " whereas novices clustered by syntactic category. Recall 
clusters for experts were thus  functionally or "deeply" based, where- 
as those of novices were based on "surface" features of programming 
code. This distinction is reminiscent of the striking developmental 
shift from surface structure-based, or "syntagmatic , " word associa- 
tions to functional category-based, or "paradigmatic," word associa- 
tions during childhood (e.  g . , Nelson, 1977). 

DiPersio, Isbister and Shneiderman (1980) have carried this line of 
research further b y  demonstrating that performance on a program 
memorizationlreconstruction task provides a useful measure and pre- 
dictor of computer programming ability. Scores on program logic 
reconstruction tasks and performance on college class exams in pro- 
gramming were significantly correlated. The authors attributed this 
result to the extent of subjects' "semantic" knowledge base for the 
programming language, that i s ,  the functional nature of the ?ode 
(which we have more appropriately designated as the "pragmatics" of 
programming slull). Such results are encouraging insofar as they 
suggest the utility of such a memory task as one measure for assess- 
ing computer programming skill development. More research will be 
required, however, for the performance levels of individuals rather 
than groups to be inferred from their performance on program memory 
tasks. 



It is also a widely replicated finding that expert programmers debug 
their programs in different ways than do novices (Atwood & Ramsey, 
1978; Gould, 1975; Gould & Drongowski, 1974; Youngs, 1974). 
Perhaps most important is the recent finding (Jeffries, 1982) that 
program debugging involves comprehension processes analogous to 
those for reading ordinary language prose. Experts read programs 
for flow of control (execution), rather than Line by line (as text) .  

In terms of identifying the specific cognitive activities involved in 
programming ( the necessity of which we argued for earlier in our 
discussion of the cognitive demands of computer programming) , we 
need a more comprehensive account of the task of programming. 
Recent research in cognitive science provides such accounts, and to 
these theories we now turn.  

Theories of Cognitive Subtasks Involved in Programming 

It is the consensus of cognitive psychologists who have developed 
global theories of expert  programming skill that computer programming 
is highly complex since "it involves subtasks that draw on different 
knowledge domains and a variety of cognitive processes"(Pennington, 
1982, p. 11). Jus t  as in the case of theories of problem solving in 
general, cognitive theories that have been developed of expert p ro - .  
gramming articulate a set  of distinctive cognitive activities that take 
place in the development of a computer program. These activities are  
required for programming whether the programmer is novice or ex- 
pert ,  since they constit& phases of the problem-solving process in 
any general theory of problem solving (e .g , ,  Heller & Greeno, 1979; 
Newell & Simon, 1972; Polya, 1957). They may be summarized as: 
(1) understanding the programming problem; ( 2 )  designing or plan- 
ning a programming solution; ( 3 )  writing a programming code that 
implements the plan; and ( 4 )  comprehension of the written program 
and program debugging. We will discuss each of these cognitive 
subtasks in tu rn ,  with an eye toward thinking about what kinds of 
cognitive demands each of them may make on the programmer. 

1. Understanding the Problem 

It is generally agreed that in attempting to solve a problem, the 
problem solver first  sets up some form of "problem representation" in 
working memory which is used to model a problem in terms of what 
the problem solver knows about the problem domain, and how that 
knowledge is organized for h im  or her. En recent studies (e. g . ,  Chi, 
et  al., 1981). substantive qualitative as well as quantitative differ- 
ences in the problem-solving processes of experts and novices for  a 
given content domain, such as physics, have indicated that experts 



set up radically different kinds of problem representations in their 
early attempts to understand the problem presented. In the case of 
applying physics to mechanical problems, experts engage in extensive 
qualitative problem analysis, o r  processes of problem understanding, 
before attempting to solve the problem, for example, through setting 
up a physical representation of the problem situation that was initially 
depicted in words (Larkin, 1977; McDermott & Larlun, 1978; Simon & 

Simon, 1978). Physics experts focus on deep structural features of 
the problems in problem categorization studies,  sorting together 
problems which would be solved according to specific laws of physics, 
unlike novices, who focus more on the surface structural features of 
the problem structure,  such as the objects involved, physics terms 
used, and the physical configurations described in the problem (Chi 
et a l . ,  1981). What the expert  appears to know is what kinds of 
features of the problem should constitute part  of their problem repre- 
sentation; this knowledge is apparently faali tated by large-scale 
memory units in terms of problem types that are identified in terms of 
deep s t ructure,  and b y  the experts'  facility in rapidly building 
qualitative physical symbolic representations of the verbal problem 
statements. 

h a discussion of a computer-implemented model of physics problem 
solving, Larkin (1980) notes that the importance of a deep problem 
representation during the problem understanding process is that 

using these qualitative features, the [computer simulated] 
solver tentatively selects a method for solving the problem. 
It then applies key physics principles from that method to 
generate qualitative information about the problem--for 
example, information about the direction an object moves 
[our Design and Planning cognitive sub task ] .  When suffi- 
cient information has been generated to solve t h e  abstracted 
qualitative problem, the model solver elaborates this quali- 
tative solution by  generating corresponding quantitative 
equations [our Program Coding phase] to actually solve the 
original problem. (p .  116) 

What is illuminating for thinking about computer programming from 
problem-solving studies such as these, and in other domains such as 
geometry (Greeno, 1976) or  writing (Flower & Hayes, 1979), is that 
the problem solver must have substantial domain-specific knowledge in 
order to set up a functional problem representation. With respect to 
understanding the problem, Larkin's physics solver "had to know 
what h n d  of features to abstract in constructing a useful simplified 
problem. I' For developing a problem-solving plan, it "had to know 
what h n d  of operations he could apply to solve abstracted problems," 



and for working out the details of the problem solution had to know 
"ow these [operations] were to be elaborated when he returned to 
construct a full solution." Although solution debugging is not men- 
tioned in this work, presumably he would also have to know how to 
check whether or  not the solution was a correct one. 

So domain-specific knowledge is very important for understanding the 
programming problem. Lf a child was asked to write a graphics 
program to draw a Colonial home, she would have to know about what 
Colonial houses looked like, their key identificational features, and so 
on. Similarly, to develop a game system, a c h l d  would need to know 
the many domain-specific facts about computer games, such as vari- 
able skill level, score feedback, and so on. Since domain-specific 
knowledge is such a fundamental aspect of understanding programming 
problems, serious thought needs to be given to what we know about 
conceptual development for any given content domain for whlch we are  
interested in posing programming problems for children. Certain 
domains, such as statistics, o r  simulations for complex domains such 
as ecosystems and economics, may well be out of reach for school- 
aged children, and constitute inappropriate programming project 
content. But the great  variety of domains that children are learning 
about in school should provide ample opportunity for rich pro- 
gramming projects. 

A s  for the specifics of the categories or types of prablems that the 
expert programmer is  able to identify in attempting to understand t h e ,  
programming problem, many different alternatives have been suggested, 
and little empirical evidence, even for adult experts ,  exists to dis- 
tinguish them. We summarize those described by Pennington (1982) 
below : 

a )  Function-oriented. Problems would be seen as indicating 
different program goals o r  functions, in terms of what is to be ac- 
complished, such as "update inventory accounts and produce reports" 
(e. g . , Balzer , Goldman & Wile, 1977; Shneiderman & Mayer , 1979). 

b ) Data1 process-oriented. Problems would be seen as specifying 
external object classes (e. g . , updates, inventory accounts, s ta tus  
report) ,  and operations (e. g. , transform initial objects to final ones) 
applied to specific classes of objects (e. g . , Brooks, 1982 ; Miller gr 

Goldstein, 1977) . 
el  Sequence-oriented. Problems would be decomposed into their 

basic components or  procedures, and problem representations would 
contain sequencing information (e. g . , Atwood, Jeffries & Polson, 
1980) . 



A s  noted above, the problem representation that serves as the out- 
come of the problem-understanding process is one of the most funda- 
mental components of the problem-solving process, for programming as 
well as other content domains. For this reason, we expect the cogni- 
tive subtask of understanding the programming problem to be devel- 
opmentally central. The cognitive demands of understanding pro- 
gramming problems, as we have seen, will depend at least upon the 
extent and organization of a child's domain-specific knowledge that is 
required for the problem a t  hand. But since the adult expert pro- 
grammer literature is currently equivocal on what forms such problem 
representations may take, we cannot make precise the cognitive 
demands of program understanding. For at  least some of the pro- 
posed alternatives, datalprocess-oriented and sequence-oriented , the 
child would need to be able to learn about the different classes of 
data objects and operations, in the first case, and about the concepts 
of "procedures"and "sequentiality, in the second case. Such basic 
requirements have direct implications for defining a "core" of minimal 
programming knowledge, to be discussed below. 

2. Designing I Planning the Program 

After achieving an initial problem representation, the programmer 
needs to map out a plan or  design for the program to be written later 
in programming code. Atwood et al. (1980) provide an informative 
description of the requirements of this process : 

Software design is  the process of translating a set of task 
requirements (functional specifications) into a structured 
description [design or  plan] of a computer system that wil l  
perform the task. There are three major aspects to this 
description. The original speafications a re  decomposed into 
a collection of modules, or substructures ,  each of which 
satisfies part  of the original problem description. This is 
often referred to as  modular decomposition of the problem. 
In addition, these modules must communicate in some way. 
The designer must specify the interrelationships and inter- 
actions among. the modules [also called procedures in smaller 
systems 1 . This includes the control s t ruc ture ,  which 
indicates which modules are  used by a given superordinate 
module to do i ts  work and the conditions under which they 
are used. Lastly, a design may include a definition of the 
data structures required. (p .  3 )  

According to Brooks ( 1 9 8 2 ) ,  one-third of the entire time a program 
team spends on a software project (including coding and testing) 
should be spent planning the task. Atwood et al. (1980). in a de- 



tailed analysis of the think-aloud protocols of two expert software 
designers as they solved a software design problem, found that they - 

had available many general design strategies, such as problem decom- 
position, subgoal generation, retrieval of known solutions, generation 
and principled or  npolicy driven"se1ection of alternative solutions, 
and evaluative analysis and debugging of solution components. It is  
of some importance in this respect that a major move in programming 
instruction is to treat programming as an instance of a general prob- 
lem of structured design (Floyd, 1979) , rather than as machine and 
programming language-specific (Sheil, 1980 1. 

At this point, someone is bound to object that,  in the programming 
process, i t  is  possible to bypass this step of program development 
altogether, that one may first  make an initial reading of the problem, 
then sit down at  the keyboard and begin composing code to achieve 
the task. And i t  has been said (Galanter, 1983) that one frequently 
finds much preplanning in PASCAL (a compiler language) program- 
ming, but often little o r  no planning prior to code writing for pro- 
gramming languages such as BASIC (an interpreted language). What 
are we to make of this observation in terms of defining design and 
planning as a distinct cognitive subtask in programming? Is i t  op- 
tional? The answer to this question certainly has consequences for 
the cognitive demands of pr~gramming,  if one subtask ingredient to it. 
involves whatever cognitive prerequisites there are  for planning and 
design. 

In response to this objection, we allow for the distinction commonly 
made, and applicable to the cognitive activity of programming, be- 
tween planning-in-action versus preplanning (Rogoff & Gardner , 
1983). In terms of this distinction, what the BASIC programmer is 
engaged in as he o r  she sits down and begins to generate program- 
ming code without a prior plan is planning-in-action, making decisions 
as he or she goes about the s t ructure sf the program, which evolves 
as the materials of the program are created. Schon and Bamberger 
(1982) have described the outcomes of such a planning-in-action 
creative process in art, music, and other related domains as a conse- 
quence of an iterative series of '~conversations" the creator has with 
his or her partial creations. Bereiter (1979) has characterized a 
similar process in composing language text as "epistemic," in whch 
one comes to see and understand new things as  one channels one's 
ideas into a written product. But to return to programming, d- 
though planning-in-action is certainly possible, even sufficient, to 
produce a program, we expect such a planned-in-action program often 
to have great costs for the beginning programmer. The reason has 
to do with the anticipated difficulties of comprehension and debugging 
when one goes back to t ry  to understand what one has done in 



writing a program not built with foresight. Of course, for expert 
programmers the sheer automaticity of many programming projects, 
since they are able to recall successful plans for similar programs o r  
software systems, will mean that little preplanning will be required 
for the program code generation. In other words, the adult program- 
m e r  often can integrate the subtasks of planning and code writing. 
But the child as novice programmer is not at  that level of under- 
standing, and does not have a store of programming schemas available 
for ready reference during planning-in-action while creating a pro- 
gram. So we WLU continue in our  discussion of the cognitive demands 
of programming to include the cognitive demands of the planning1 
design cognitive subtask of programming. 

In terms of cognitive demands, details of the various proposals for  
how planning takes place in programming, whether the top-down 
orientations with successive plan refinement or more opportunistic 
approaches analogous to the work of Hayes-Roth and Hayes-Roth 
(1979) , imply that preadolescents may have difficulties generating 
program designs, particularly ones that a re  complex and require 
hypothetical and counterfactual reasoning more characteristic of the 
older child. We shall provide a brief review of this literature in 
the section on conceptual development and programming. One of the 
principal cognitive problems comes down to what Stefik ( l98la ,  1981b) 
in his artificial intelligence work on planning called the recognition of 
"commitments" of plan components, involving seeing ahead or symboli- 
cally executing plans o r  plan parts  in order  to mentally simulate the 
consequences of particular design proposals, and finding problems 
with those commitments that indicate the need for a new design. 

Pennington (1982) has  indicated problems with the very general 
nature of proposals that program plans a re  hierarchical in nature,  
such hierarchy representing successive refinements of the program 
description until a solution that can be mapped out in programming 
code is reached. How do each of these successive versions of the 
plan represent and fur ther  elaborate the four basic types of program 
information, that is: ( a )  the purposelfunction of a particular plan 
unit; (b )  the s t ruc ture  of the data objects; (c )  the sequencing of 
operations (control flow); and ( d )  the transformations of data objects 
(data flow)? A s  she notes: 

Little empirical evidence exists on how programmers coordi- 
nate and transform the four types of information embodied 
in a final programming product, yet it seems that these 
coordinations underlie the complexity of programming and 
other planning tasks.  (p .  19) 



We would agree here, but note further that studies of the develop- 
ment of planning for any content domain are in their infancy 
(Friedman, Scholnick & Cocking, 1983; Pea, 1982). What evidence 
exists indicates that,  at least for planning problems utilizing familiar 
classroom chores in a chore-scheduling task where the goal is to find 
the shortest possible plan for doing all the chores, children from 8 to 
1 2  years of age are capable of substantial "debugging" of long plans 
through revisions. 

We may now ask: What programming knowledge is necessary to 
design the program plan? A s  discussed earlier, expert programmers 
chunk familiar patterns of programs, as indicated by the quality of 
their program comprehension as indexed by program recall. It is 
currently unclear how this knowledge is organized or acquired (an 
account of cognitive skill acquisition comparable to J. R .  Anderson 
[I9821 could be offered as a model of the lat ter) ,  although these are 
fundamental developmental questions. 

Some proposals have been made on the character of the expert pro- 
grammer's memory store, but little evidence is available. Some alter- 
natives as reviewed by Pennington (1982) -are set out below, and aim 
to answer the question of what programming knowledge schemas or 
chunks are available to the expert. The implication for our questions 
about children are that whatever kinds of programming knowledge are 
required by children of the age of interest would have to be learnable 
in order for program plans drawing on such knowledge to be achev- 
able. So what are the schemas? 

a )  Anything from transactions (less than a programming state- 
ment) to chunks (unit that accomplishes a goal) to higher level 
chunks (familiar algorithms) (Mayer, 1981) ; 

b) Hierarchy of patterns from operations (compare two numbers) 
to small algorithms (sum an array) to large algorithms (bubble sort) 
to program patterns (Shneiderman 1980; Shneiderman & Mayer 1979); 

c)  Known solutions /plans /plan elements ( Atwood, Jeffries & 

Polson, 1980; Balzer et al., 1977; Miller & Goldstein, 1979) ; 

c l )  High-level programming units such as loop and recursion 
strusture (Rich, 1981; Rich & Shrobe, 1979; Soioway & Woolf, 1980;  
Soloway et id., 1 9 8 2 ) ;  

e )  BuiJding block units such as basic loop, augmentation, and 
tilter (Waters, 1979) ; 



f )  Categories with internal s t ructure,  such as rules for data 
structures,  enumerations (looping constructs) , mappings, etc. 
(Barstow, 1977, 1979). 

3. Coding a Program 

This phase of program development consists of a translation from the 
most refined version of the program design into the programming 
code. Brookst (1975) estimate of less than 200 coding templates 
necessary to define the syntactical arrangements of code in statements 
makes clear why it is said in the programming industry that coding is 
a much simpler process than program design, which appears to in- 
volve a much more vast and initially ill-defined problem space. 
According to Brooks (1982), only one-sixth of the time allocated to a 
software project should invlove the actual writing of the program 
code. It is unlikely that this phase can be completely independent of 
the program planning phase , since different programming languages 
provide different options for plan implementation, such as "the availa- 
bility (or lack) of linked list data structures"(Pennington, 1982, p .  
2 4 ) .  

Brookst (1975, 1977) s tudy of a programmer's coding performance 
found symbolic execution, or what we might describe as mental simu- 
lation, to be the major feature of the coding process. Brooks' 
account postulates that 

a plan element triggers a series of s teps  through whch  a 
piece of code is generated and then the programmer "sym- 
bolically executesn that piece of code in order  to assign an 
effect to it.  This effect is  compared with the intended 
effect of the plan element; any discrepancy causes more 
code to be generated until the intended effect is achieved. 
Then the next plan element is retrieved and the process 
continues. Throughout this process a representation of the 
program is built up ,  storing information about the objects 
(variables, data s t ruc tures ,  etc. ) , their meanings, and 
their properties. (See Pennington, 1982, p . 24)  

Once again, as in the case of plan construction where symbolic exe- 
cution plays a major role, we find that program coding requires sub- 
stantial hypothetical thought. A s  for the cognitive demands of gen- 
erating program code, we may note three general classes of apparent 
prerequisites: (1)  ability to engage in hypothetical symbolic exe- 
cution of code; ( 2 )  ability to learn the coding templates that define 
the syntactical knowledge necessary for code generation : and 
( 3 )  ability to keep to the goal at hand, or program plan, unless 
deviations from it are  required to generate the code; in such an 



event the plan would need to be revised, with consequences for the 
code then to be generated to achieve it.  

4. Comprehending and Debugging a Program 

How do programmers comprehend programs? In order to debug or 
modify their programs, they need to learn from their own or others '  
programs. If they are  to realize how much progress they have made 
in developing a program, comprehension must play a key role. One 
extremely useful paper in thinking about this problem is by  Green, 
Sime and Fitter (1980), who emphasize at some length the importance 
but current neglect sf developing means for "getting information - out 
of programs as well as  into themL-the program comprehension prob- 
lem. They note that "some of the major problems [a  programmer 
faces] come when the program is being debugged, or  extended, o r  
modified, or just when the past half-hour's work is being reviewed" 
(p.  894) .  Pennington (1982, p. 29) notes that "program comprehen- 
sion also involves reversing the forward mappings from problem 
representation in the external domain to successive levels of plans to 
programming language code." Program comprehension would thus 
require a n  inferential retrieval of the program creation process. 

Four very different views of the program comprehension process have 
been proposed, and they have not been compared in terms of their 
empirical validity: one is bottom-up, one is middle-out, one is top- 
down, and one is transformational (Pennington, 1982, pp. 26-27, 
whom we follow closely in this section). Shneiderman (1976) finds 
expert programmers to recall more gist ,  o r  high level ldgic, of the 
program than do novices. He later (198Q) argued for a bottom-up 
construction of meaningful units of programming code, from operations 
to aigsrithrns on up to the £unction of the program as a whole. 
Atwood and Ramsey (1978) have a multiple pass model analogous to- 
Hayes-Roth and Hayes-Roth's (1979) opportunistic model of planning, 
in the sense that programmers utilize high-level and low-level infor- 
mation about the program structure advantageously in order  to under- 
stand the program. 

On the first pass ,  some level of the [program] macrostruc- 
ture is integrated, possibly as high as program function, 
possibly at some level of chunking. Successive passes lead 
to integration of lower level propositions (working down) 
and successive integrations of the macrostructure (working 
up). (Pennington, 1982,  p.  27) 

Brooks ( 1 9 8 2 )  views program comprehension as hypothesis driven and 
as  immediately seeking out the high-level schema for the program. 



The program reader then is said to seek out evidence for predicted 
program components consistent with their high-level expectations. 
This process works iteratively until the program reader has assimi- 
lated all the code to understand its  precise workings. The complex 
transformational account offered by Rich, Shrobe and Waters (Rich, 
1981; Rich & Shrobe, 1978, 1979; Rich, Shrobe, Waters, Sussman & 

Hewitt, 1978; Rich & Waters, 1981; Shrobe, 1979; Waters, 1978, 1979) 
implies that program understanding is mediated by a hierarchical 
representation of three levels: (1) deep plans (purpose) ; ( 2 )  surface 
plans (in program s t ruc tu re ) ;  and (3) definitions of data objects, 
properties, and 110 specifications for program code segments. 

What does all of this mean for the child who needs to be able to 
comprehend programs as one cognitive subtask of programming? 
Again, this is a complex question, since even a t  this level of subtask 
analysis this question is analogous to that of "What are the cognitive 
demands of (natural language) text comprehension?" which is far too 
general a question to be meaningful psychologically. The question 
asked should instead depend upon what kinds of text (in terms of 
text genre) ,  logical complexity of the text,  in terms of the inferences 
required to understand i t  (e. g . ,  Clark, 1977), constituent state- 
ments, words and, in the case of the beginning reader ,  even letters,  
of which the text is composed (e. g., Gibson & Levin, 1975). At the 
most basic level, children would have to be able to read the lines of 
code and identify the meanings of the constituent elements of the 
program, or primitive commands. This much is basic. But a much 
more complex task is to understand the interrelationshps between 
these lines of code, to recognize the units, modules, or procedures 
which make up the meaning of the program as a whole. Studies 
(e. g . ,  Kurland & Pea, 1983) demonstrate that comprehending pro- 
grams at  multiple levels is a difficult task even for relatively expe- 
rienced child programmers from 8 to 12 years of age. However, what 
is as yet unclear is whether children do not tend to comprehend 
programs at "deepn levels because they have difficulty decoding even 
the surface syntax, o r  whether for the type of programming activities 
children typically engage in there is little incentive to probe below 
the surface. 

We have provided a brief account above of the four major constituent 
cognitive subtasks of programming insofar as they are currently 
understood in the literatures of cognitive science and software psy- 
chology. What we have observed is that even a t  this level of speci- 
ficity, although we can articulate at a general level some kmds of 
knowledge and abilities that children should have in order to mentally 



engage in these subtasks (which we will not review here) ,  we found 
in each case that the four subtasks could be fruitfully decomposed 
still further. But surely such decomposition must at some point come 
to an end, or the resolution of our analysis will be so minute as to 
map one per one on each decision the programmer makes whle pro- 
gramming. There are no doubt an infinite diversity of those, much - 
Like utterances in natural language, and a cognitive demand analysis 
that is an infinite list is not of much use. So how fine shall the 
grains of the cognitive demand analysis be? 

Before falling into some existential abyss, let us not lose sight of the 
original goals of thinking about the cognitive demands of program- 
ming; that i s ,  basically, to understand well enough what cognitive 
prerequisites different programming activities have so that children 
are able to pain entry to the world of programming, and so that 
overly complex programming subtasks are not required of them. 
Inevitably, there are those who will look for the curricular implica- 
tions of these analyses, and a certain amount of fuzziness or irnpre- 
cision will at first be likely. Insufficient data are available on the 
development of skills such as planning, symbolic execution, and 
problem understanding, and such data as do exist are derived from 
children's performances in task environments so unlike programming 
as not to be straightforwardly applicable to it. The consequence of 
this point is that s p e c i m g  ages or prerequisite knowledge states at 
which certain programming activities can or cannot be undertaken is a 
risky business if done a priori, and cannot be warranted on the basis 
of available evidence. Instead, we need to design programming tasks 
in which children of different ages can attempt the programming 
cognitive subtasks we have outlined above, so that we can see on an 
empirical basis what children appear to be capable of. 

We will now review the few observations that have been made to date 
on the development of programming skills. To anticipate, our con- 
cerns above will not be reflected in the available literature. 

The Development of Programming Skills 

What n B e c o w g  a Programmern Means: Children 

The few available studies of children's programming have not been 
developmental in nature, articulating intermediate stages of compe- 
tence en route to mastery and setting out constraints on the devel- 
opment of specific computer programming activities (such as those 
articulated above) in terms of prerequisite knowledge. Rather, these 
studies are observational and anecdotal studies of individuals' learning 
to program to show that "children can program," as well as to docu- 



ment some of the motivational benefits of such computer programming 
experience (e .g. ,  Papert et  al., 1979). We find that little thought or 
research has been directed to the important problem of articulating 
intermediate levels of computer pro&amming mastery. This is a 
serious knowledge gap since "understanding" is not an all-or-none 
mental state (e. g . , Nickerson, 1982) and the processes undergirding 
developmental transformations of a person's understanding are of 
central concern for a developmental cognitive science. Because 
Dewey's concept of 'Ireadiness to learn" has proven to be of such 
wide instructional applicability, we believe that delineating these 
intermediate forms of understanding must be a goal of developmental 
research on programming. This dearth of knowledge is compounded 
with the problem that ,  from the popular literature on children and 
programming, it appears as if everything we have learned about 
cognitive development during the last quarter  century has suddenly 
been rendered irrelevant by the advent of the microprocessor. For 
example, 5-year-olds who can get a graphics cursor to work in the 
Logo programming language are  called "programmers, 'I conveying the 
popular assumption that they have come to understand the logical 
operations ingredient to a program's flow of control, and are  capable 
of all the cognitive subtasks of programming. 

Child Novice Pro~rammers 

Only limited evidence, somewhat bleak in character,  is currently 
available on levels of programming abilities achieved by individuals of 
different age groups in the precollege-age population. These statis- 
tics should not, of course, be taken to indicate what each c h l d  may 
be capable of if allowed his or  own computer in school and the sup- 
port of optimal instruction. In the National Assessment of Educational 
Progress survey of 2500 13 -year-olds and 2500 17-year-olds during 
the 1977-78 school year (NAEP, 1980), even among the small percent- 
age of students who claimed to be able to program a computer, "per- 
formance on flowchart reading exercises and simple BASIC programs 
revealed very poor understanding of algorithmic processes involving 
conditional branching1' (cited by R. E. Anderson, 1982, p. 14). 

It is worth noting in this context that in current  instructional envi- 
ronments, children appear to have basic conceptual and representa- 
tional difficulties in constructing dynamic mental models of what is 
happening when the computer is executing lines of their programs, 
which sets critical limits on the computer programming skill level that 
they attain. Furthermore, systematic but "naive1' mental models o r  
"naive epistemologies" (diSessa , 1982 ) of computer procedural func- 
tioning may initially guide and mislead chddren's understanding of 
programming, which, as we shall see,  is the case for adult novice 



programmers. Empirical studies of the program comprehension proc- 
esses of children at  various levels of computer programming expe- 
rience will be essential for an understanding of this issue. 

To take one example: In work at  our laboratory with child Logo 
programmers (Kurland 81 Pea, 1983b), we have found that child 
novices frequently adopt a systema ic but  misguided conception of the 5 
manner in which control is passed between Logo procedures. Many 
children believe that placing the name of the executing procedure 
within that procedure causes execution to "1oop"back through the 
procedure when, in fact,  what happens is that control is passed to a 
copy of the executing procedure. This procedure is then executed, 
and when that process is complete, control is passed back to the 
procedure which last called it.  Children adopted models of flow of 
control which worked for simple cases, such as programs consisting of 
only one procedure or  tail recursive procedures, but which proved 
inadequate when the programming goal required more complex pro- 
gramming constructions. 

In other studies of Logo programming development (Pea, Hawkins & 

Sheingold, 1983), even among the 25% of the children (8- and 9-year- 
olds, 11- and 12-year-olds) who were extremely interested in learning 
programming, the programs they wrote reached but a moderate level 
of sophistication after a year's work and approximately 30 hours of 
on-line programming experience. We found that children's grasp of 
fundamental programming concepts such as variables, tests,  and 
recursion, and of specific Logo primitive commands such as REPEAT, 
was highly context-specific and rote in character. To take one 
example: A c u d  who had written a procedure using REPEAT which 
repeatedly printed her  namk on the screen was unable to recognize 
the efficiency of using the REPEAT command to draw a square. 
Instead, the child redundantly wrote the same line-drawing procedure 
four times in succession. 

Programming Environment as Context for Development of Programming 
Skills 

Much has been made recently in educational journals as well as in the 
popular press about which programming language is best for ch ldren  
to learn (Harvey, 1982; Tinker, 1982).  Arguments for the relative 
benefits of one language over another have raged for years among 
computer scientists, though recent reviews indicate that very little 
empirical research of any quality has been conducted on this issue 
(Brooks, 1980; Moher & Schneider, 1982; Sheil, 1980) .  Operating 
systems, which are  programs usually supplied with the computer by  
the manufacturer that define how a user interacts with the language 



and how the language interacts with the hardware, are often ignored 
in arguments over the merits of different programming languages. 
Since the ease or difficulty of learning a language, especially for the 
novice, depends on the programming environment supported by the 
operating system as much as on the s t ructure of the language itself, 
i t  i s  important to be clear on what exactly is  meant by an operating 
system and a programming environment. 

The operating system mediates all the activities of the computer. It 
permits the user to call up a language, and provides the link between 
programming commands and the hardware (disk drives,  printers,  tape 
units, e tc . ) .  The operating system may also support an editor 
through which the program can be entered into the computer, the 
debugging tools, the e r ror  trapping routines, the user subroutine 
libraries, the file management subsystems, and on-line help files. 
Depending on the sophistication of the operating system, a wide range 
of other programming aids and application packages, which constitute 
the programming environment, can also be made available. For ex- 
ample, UCSD-PASCAL, as i t  is implemented on most microcomputers, 
consists of a language--that i s ,  a set  of command statements which 
can be s t rung together according to specific syntactic and procedural 
rules--and an operating system (the UCSD P-system) which supports 
the editing, debugging, compiling, and filing of programs written in 
P-ASCAL (or FORTRAN, or  assembler), as  well as the linking of 
programs to extensive libraries of user  routines. In a PASCAL 
programming environment one can also call upon numerous application 
packages and programming aids to help find program errors or to 
speed up the writing o r  editing of programs. 

This distinction between a language per  se  and the programming 
environment in which one works with the language is critical. Many 
of the alleged advantages of Logo over BASIC as  a language for 
children (Harvey, 1982) actually lie in the sophistication of Logo's 
programming environment. For example, compared to the standard 
BASIC that runs on an Apple computer, Apple Logo has a much more 
sophisticated editor, more detailed error  messages, better debugging 
procedures, and provides more straightforward support for creating 
and manipulating files. However, a BASIC programming environment 
can be created on the Apple which provides the BASIC programmer 
with many of the advantages of the Logo environment. One can add 
to standard Apple BASIC a powerful program editor, debugging aids, 
libraries of useful routines which can be incorporated into any pro- 
gram, and even turtle graphic and recursive command structures of 
the type normally associated with Logo. 

There is another important sense in whlch one language h f fe r s  from 
another. Different languages are more or less well-suited for diifer- 



ent purposes. For example, SOLO, a language designed for students 
of cognitive psychology to s tudy artificial intelligence, is much better 
adapted to this purpose than is BASIC (Eisenstadt, Laubsch & 

Kahney , 1981) . However, writing a number-crunching program, a 
simple task in BASIC, would be quite difficult in SOLO. To say that 
SOLO is a better language than BASIC (or  vice versa) without refer- 
ence to the computer programming domain would be misleading and 
meaningless. Similarly, one characteristic sf expert programmers 
(Kurland & Pea, in preparation) is they h o w  many different lan- 
guages. FOP any particular programming job, they tend to select the 
language best suited for that application taking into account the 
specific machine and operating environment in w h c h  they will be 
working. 

A review of existing psychological studies of computer programming 
by Sheil (1981b) has highlighted some marginal effects for a variety 
of different measures (such as ease of debugging and comprehension 
measures) when comparing different programming languages that vary 
in features such as s t ructures  for expressing flow of control (e .g . ,  
the infamous GOTOs; Dikstra, 1968, 1976). The lesson to be learned 
is that the speaf ic  language chosen probably does not make a big 
difference, at  least for adults. Far more important in carrying the 
variance for computer programming expertise are  issues such as the 
resources that a re  available in the programming environment, how 
programming instruction occurs, and the amount of program writing, 
reading, and debugging students engage in. 

Instructional Environment 

Just  as the programming environment is a critical factor in determin- 
ing the facility with which programmers can work with a language 
(and thus what demands that 'language will place on the learner) ,  the 
instmctional environment plays a key role in determining how suc- 
cesa%d%y students will be able to take advantage of the programming 
environment. Clearly, programming is  not a black box into which 
students can simply be plunked. Many learners, children included, 
will need carefully sequenced instruction in how to use the operating 
system, how to combine programming lines into higher level units that 
accomplish some goal, how to select computer programming projects 
that are within their current  capability, and how to t h k  systemati- 
cally about debugging and modifying programs. 

The literature on teaching computer programming and designing corn-. 
puter programming tutors ( e . g . ,  Miller, 1974) supports the theory 
that deciding how best to introduce computer programming to students 



and to assist them in writing programs is seriously hampered by a 
paucity of relevant pedagogical theory. 

The question of how much, if any, instruction is  best  when introduc- 
ing children to computer programming is hotly debated (e. g . ,  Howe, 
1981; Papert, 1980). At one extreme, i t  is possible to find schools in 
which computer programming (particularly in COBOL or BASIC)  is 
taught like any other academic subject. Students have textbooks and 
workbooks, take tests on the definitions of various commands, and 
are  expected to master a given set  of computer programming con- 
structs and to be able to write a given set  of sample programs. At 
the other extreme, some teachers provide almost no direct instruction, 
encouraging children to explore possibilities, experiment, and create 
their own problems to solve. This "enlightenment" idea, popularized 
for programming by Papert (1980) in his book Mindstorms, holds that 
minimal overt instruction is necessary if the programming language is 
sufficiently engaging and simple to use,  while at  the same time being 
powerful enough for children to do exciting things. Though this 
view is not universally shared, even by  devotees of Logo (Howe, 
1981), i t  has had profound influence in the educational community. 

A s  a result of a year of observation and research with children in 
two Logo classrooms (8- and 9-year-olds, 11- and-12 year-olds) in 
the Bank Street School for Children of the Bank Street College of 
Education, the importance of instructional context in promoting the 
development of computer programming skills has become apparent. 
Classroom teachers decided to adopt the instructional strategy advo- 
cated by Papert (1980), who suggests that children be allowed to 
explore the programming domain freely, with minimal intrusion or 
organized instruction. Thus, at the outset,  the children were taught 
basic Logo commands and then encouraged to develop their own goals 
and projects. Each child was assigned two 45-minute work periods 
each week on the computers, but could add time when the computers 
were free or if other required classroom work had been completed. 
Teachers provided assistance with these individual or collaborative 
efforts, but offered tninimal organized group instruction in new pro- 
gramming concepts and tools. Children learned about. new concepts 
and programming possibilities as the need arose, and occasionally 
teachers organized small groups to introduce an interesting concept or 
possibility. There were no required computer programming assign- 
ments and no assessments of computer programming skill. During the 
year, the children who were interested learned enough computer 
programming to write simple procedures and perform routine house- 
keeping and editing functions. Only a few children, however, devel- 
oped considerable facility with the programming language and rou- 
tinely incorporated the difficult concepts of recursion, conditionals, 
and variables into their computer programming projects. 



By year's end, both teachers were dissatisfied with the levels of 
computer programming skill in these classrooms and decided to use a 
more structured instructional context for teaching computer pro- 
gramming the next year. They later included computer programming 
as an integral par t  of their school curriculum, introduced a struc- 
tured sequence of concepts and programming tools, and provided 
children with assignments, guided projects, and programming tasks. 
It is interesting to note in this context that Piaget himself criticized 
supposed "implementations1' of his activity-based approach to cognitive 
development in educational settings because they lacked sufficient 
structure (Kamii, 1974). 

There was considerable variability in the degree of interest individual 
children expressed b computer programming (Pea et al., 1983). 
Classroom observations, amount of time spent on the computer, and 
teachers' reports converged to indicate that about 25% of the 25 
children in each class were highly interested in learning to program 
and spent correspondingly more time than other children on the 
computers. Approximately another 25% of each class expressed very 
little interest in computer programming and spent almost no time 
working at the computers after the initial introductory period. The 
remaining 50% were modestly interested, but often adjusted the time 
spent with computers to other interests that they had throughout the 
year. So, for example, if a child was interested in a research topic 
OP writing assignment during a particular week, she might choose to 
focus on that work and sacrifice her time available for computer 
programming. 

These findings of the need for instructional guidance for computer 
programming development receive support from extensive Logo in- 
struction work by  duBoulay and OIShea (1974, 1978) in which typical9 
conceptual problems that arise in teaching Logo programming are  
approached through a highly detailed teaching strategy consisting of 
33 ordered worksheets for introducing computational ideas, problem- 
solving tactics, and debugging skill. Such carefully planned se- 
quences of instruction may be important to ensure that computer 
programming schema knowledge is not "weldedtt (Shif, 1969) or "rigid" 
(Werner, 1957) with respect to i ts  contexts of occurrence. 

On a related point, Mayer (1979, 1981) has shawn that a concrete 
conceptual model of a programming system aids college students in 
learning BASIC by acting as an "advance organizer" of the many 
technical details of that programming language. With the aid of the 
conceptual model, he argues,  learners are  able to assimilate the 
details of the programming language to the model rather than needing 
to induce the model from the details. Moran (1981) makes the impor- 



tant point that Mayerls models may work because they are "synthetic 
constructions" composed of recognizable par t s ,  such as "memory cells 
and procedural agents,  in contrast to more global analogies ('Ithe 
text editor is like a typewritern) which often don't work. 

Accounts of LevelsIStaples of Programming Skill Development 

Observations of levels of computer programming skill development 
have been extremely general and more rationally than empirically 
derived as ,  for example, was our four-level model presented earlier in 
this report. Neither of the accounts to be described below delineates 
qualitatively distinct intermediate levels of performance in terms of 
the four kinds of cognitive subtasks involved in programming dis- 
cussed above. For example, h a study of 12-year-old children 
learning to program in Logo, Howe (1980) describes three distinct 
overlapping 'stages": (1) "product-oriented" aiming to produce 
effects without concern for how they are achieved; ( 2 )  "style-con- 
scious" aiming to work in what is perceived as  "correct Logo pro- 
gramming style, m derived from worksheets that recommend specific 
programming, debugging, and editing methods; and ( 3 )  "creative 
problem solving" : use of computer programming resources for ana- 
lytic problem-solving activities; search for useful procedures from 
others to solve one's own problems; and possible production of plans, 
diagrams, or written problem specification. 

No data are reported for  the number of children successfully reaching 
the various stages,  nor is  i t  clear that one could at  any point in time 
reliably identify children performing at any of these stages as de- 
fined. Further,  the second stage appears to be an artifact of the 
way that Logo programming was taught. 

Hoc (1977) has provided a related account of three general steps in 
the construction of a mental representation of a computational device 
language (COBOL) found for adult novice programmers. Such steps 
consisted of progressive 'internalizations" of the  constructs of the 
programming language. 

What Does "Becoming a Programmer" Mean? Conceptual Difficulties of 
Adult Programmers : Some Initial Barriers 

Ln contrast to highly skilled programmers, as many adults learn to 
program they reveal deep misunderstandings of computer programming 
concepts and how different lines of programming code relate to one 
another in program organization (Bonar & Soloway, 1982 ; Jeffries , 
1982; Sheil, 1980, 1981a; Soloway, Bonar & Ehrlich, 1983; Soloway, 
Ehrlich, Bonar & Greenspan, 1982). Misunderstandings such a s  



assuming all variables to be global (when some may be specific to one 
program), and expecting that observing one pass through a loop 
allows one to predict what will happen on all subsequent passes (when 
in fact the outputs af programming statements which test for certain - 
conditions may change what will happen during any specific loop), 
were common for  college adults after finishing a PASCAL programming 
course (Jeffnes , 1982). Furthermore, Soloway, Bonar and Ehrlich 
(1983) have shown that error-ridden programs resulfing from "buggy" 
concepts of looping constructs in PASCAL may be mitigated if the 
programmer's spontaneous cognitive strategy for solving looping 
programming problems is supported by a n  appropriate programming 
language construct. Subjects were better able to write correct loo ?C 
ing programs when they use$ a READIPROCESS strategy (on the i 
pass through a loop the i element is  both read and processe 

th  
rather than a PROCESS/READ str tegy (on the i pass the i A 

# 
element is processed and the next-i element is r ead ) .  Research by 
Mayer (1976), Miller (1974), and Sime et al. (1977) also reveals that 
adult novice programmers have a difficult time with the flow of control 
concepts expressed by  conditionals (for a review of these findings, 
see duBoulay, O'Shea & Monk, 1981). We expect that the roots of 
these misunderstandings may be  based on inappropriate transfer from 
non-CP domains. 

Since members of the educational community would probably assume 
that adult programmers are  not beleaguered by conceptual problems in - 
their programming efforts, we must drive this point home. Once we 
recognize that programming by  "intellectually maturen adults is not 
characterized by error-free , routine performances (Anderson. 1983 ; 
Anderson, Farrell & Sauers,  P983), one might ask what should be 
expected of the child learning to program who devotes but a small 
percentage of his or her  time in school to learning to program. In 
fact, the conceptual difficulties of adult programmers have been 
lamented by such computer programming polyglots and visionaries as 
Minsky (1970) and Floyd (1979) as due to what is all too frequently 
taught as computer programming. Too much focus, they urge, is 
placed on low-level form such as  grammar, semantic rules,  and some 
preestablis ed algorithms for solving classes of problems, while the P 
pragmatics of program design are left for students to discover for 
themselve5. 

Summary 

Becoming a successful programmer is very hard. After m a n y  thou- 
sands of hours,  programming does not become a routine task. One 
apparent reason for this is that program development, as constituted 
by its four major cognitive subtasks,  involves the transformation s f  



ill-defined problems into well-defined ones (Greeno, 1976 ; Simon, 
1973?), and then solving them. In conclusion, we note that the 
literature we have just reviewed in this section is not helpful in 
addressing the "becorning a programmer" question in ways that inform 
our demands analysis. Before turning to a consideration of what 
would constitute the "core" of programming knowledge, it is useful at 
this juncture to reflect briefly on some of the popular conceptions of 
the knowledge required for computer programming. 

On the Cognitive Demands of Programming 

Popular Conceptions of What Knowledge Computer Programming 
Requires 

Is there any more to be be gained in our quest for the cognitive 
demands of programming subtasks from the popular literature on 
computer programming? We think not. Current knowledge about the 
prerequisite mental abilities, background knowledge, reasoning skills, 
and cognitive style that allow for the development of high-level com- 
puter programming skills in precollege-age students is entirely anec- 
dotal, and highly vulnerable to the ideological biases that observers 
have brought to their observations. Often, the children who learn 
computer programming are preselected. The popular media, com- 
puters-in-schools magazines, and computer programming teachers have 
cited levels of mathematical problem solving ability, mechanical apti- 
tude, and reasoning skills as  key determinants of progress in learn- 
ing computer programming. In earlier years,  and to some extent 
even today, the prevalent attitude was that programming required 
highly developed mathematical abilities. But early programming 
aptitude test developers recognized that "mathematical knowledge was 
associated with the [specific type of] application and not with pro- 
gramming ability" McNamara, 1967). This view is quite pervasive in 
newspapers and magazines today, and is a frequent source of fear for 
computer novices or  those considering careers in computing, partic- 
ularly women (Swaine, 1983). In biographical accounts of computer 
technicians and software developers at the frontier of their discipline 
(e. g. ,  Kidder, 1981) , the profiles which emerge do seem to support 
the popular impression of computer programming as linked to high 
mechanical and mathematical ability. h d  in .the software engineering 
literature, there is a widespread belief that "we can be fairly sure 
that intelligence and educational differences will be reflected in per- 
formance levels in software experimentation" (Moher & Schneider , 
1982, p. 7 4 ) .  There are also considerable anecdotal reports to the 
effect that ch ld ren  and adults who become serious programmers 
share,  from an early age, a strong interest in figuring out how 
things work, solving puzzles, and searching through challenging 
problem spaces (Kidder, 198 1) . 



Such observations as the above, however, are seriously compromised 
by the well-known propensity for humans to focus on the positive 
confirming cases in their search for correlations of real-world attri-  
butes,  in this case 'a high level of some ability and a high level of 
computer programming mastery (Inhelder & Piaget, 1958; Nisbett & 

Ross, 1980; Shweder, 1977; Ward & Jenkins, 1965). Such systematic 
distortions and selective attention to aspects of the data from which 
correlations a re  derived calls for the scientific study of demand 
characteristics for level of computer programming development in 
nonpreselected school populations. Furthermore, the oversimplifi- 
cations involved in these popular claims are  notorious. They are  
largely uninformative, because, as we shall demonstrate in the next 
section, there a re  many different types of programming. And one 
may ask "what a re  the demands of that kind of programming" for each 
type, as well as  for the cognitive subtasks w i t h i n  each type. Even 
more specifically, one may ask: What  are  the demands of doing 
programming subtask x in programming type y ? " A s  we shall see,  
asking what programming is raises many complex issues, much as 
asking what writing i s ,  in Fhich questions about demands are invari- 
ably linked to asking about writing genres,  or different types of 
writing (Bereiter, 1979; Olson, Mack 81 Dufy , 198 1 ) .  This skeptical 
stance must nonetheless be accompanied by a pgsitive account of the 
potential cognitive demands af specific activities involved in computer 
programming. What is ultimately at  issue is  the empirical viability of 
such a priori considerations about "demands,"at a level of analysis in 
terms of the cognitive subtasks of programming. We will re turn to 
this issue in the section on measuring program aptitude in adults. 

Defining a " C o r e h f  Programming Knowledge 

What is the minimum or  flcsre"of programming abilities that people 
shodd kave, and what prerequisite knowledge and ability are re- 
quired to attain that core? What a re  the g o d s  of programming in- 
struction that a re  appropriate? Many have recently been asking these 
questions, especially since much of society is mystified by computers, 
yet feel the need for developing some degree of computer Literacy, 
however defined. 

In a recent paper ,  Norman (1983) has distinguished four levels of 
computer literacy not unlike the four levels we kave recently offered 
as fundamental (Pea & Kurland, 1983a). The first level, involves 
knowing about general principles of computation: the second, how to 
use computers; the third,  how to program computers; and the fourth,  
haw to understand the science of computers. H e  characterized the 
first level as a necessary curriculum for everyone in society, and the 
list of concepts to be covered as: 



- software versus hardware 

- computer architecture: central processing unit, forms of 
memory 

- terminal, peripherals, microprocessor 

- algorithms: how they are developed and applied 

- procedures and programming: what they are,  how done 

- machine intelligence 

- communication networks 

- data bases: how organized and used 

- limitations of computers 

- distributed offices 

- multiprocessing 

- computer security, as in time sharing 

His second level was described as useful but not necessary for every- 
one and, like ,this report, he characterized level three, or program- 
ming, as very difficult and requiring many years of intensive study. 
Computer science is limited to the small minority who have sufficient 
interest and skill. 

From our perspective, .the best way to learn about algorithms, pro- 
cedures, and programming, even for level one, is to have hands-on 
experience. We take the position that some core of programming - 
ability is essential for this first level, not only "knowledge about" 
programming, although Norman's point about the great difficulties 
embedded in serious programming is well taken, as the discussion of 
cognitive subtasks involved in expert programming makes clear. Sheil 
(1981a), for example, argues quite convincingly that the increasingly 
widespread use of complex programmable devices, such as office 
information systems and calculators, "has made a basic appreciation of 
the nature of programming a modern survival skill1I (Sheil, 1980, 
p. 1). What remains is to define what constitutes that basic appre- 
ciation. To answer these seminal questions about minimal program- 
ming literacy and its cognitive foundations, we will require a great 
deal of empirical research, since it is essentially a question of asking 
what is the core of natural language that an individual should learn 
in school in order to be judged as a competent member of the lan- 
guage community. Part of the answer will be provided by seeing how 
individuals with varying skill levels in programming are able to cope 
with the technological complexities of today's society. On the ideo- 
logical side, Luehrmann (1981a, 1981b) has been an outspoken advo- 



cate of the need for hands-on programming ability, as has Sheil; our  
sympathies lie with these manifestations of the well-established 
Deweyan pedagogy of "learning through doing" that has been ,redis- 
covered by modem cognitive science (e.  g . , J. R. Anderson, 198 1 ; 
Anzai & Simon, 1979). 

The list of core concepts that repeatedly turns  up in discussions with 
computer programming professionals and computer programming in- 
structors includes understanding the temporal logic of sequential 
instructions, control s t ructures ,  data s t ruc tures ,  variables, and 
prscedurality . For example, Ralston and Shaw ( 1980 ) mention some 
important implications of the rapidly evolving nature of computer 
science for thinking about what students should learn, even though 
their prescriptions are  meant to be applicable to the computer science 
major in college: 

Specific skills learned today will really become obsolete. 
The principles that underlie these skills, however, will 
continue to be relevant. Only by giving the student a firm 
grounding in these principles can he or  she be protected 
from galloping obsolescence. Even a student who aspires 
only to be a programmer needs more than just programming 
skills. He or  she needs to understand issues of design, of 
the capability and potential of software, hardware, and 
theory, and of algorithms and information organization in 
general. (p .  67)  

Although many of these concerns a re  particular to individuals who are  
pursuing careers as computer scientists, the point of their argument 
is clear: general principles, not specifically tied to any single "best" 
programming language or  programming machine (see Floyd, 1979), 
should be our  educational goal for establishing a basic programming 
literacy. 

More fundamental programming concepts, as we have seen in our 
earlier discussions of the cognitive subtasks of programming, are  
those necessary for: (1) problem understanding, such as data 
classes, ty-pes of data processing operations, procedurality . the 
temporal logic of sequential instz%ctions (Galanter , 198 3 ) , and pro- 
gram functions; ( 2 )  designing and planning the program, such as 
"program s c h e m a s h f  various types, "symbolic execution" of plans, 
and "debugging"; ( 3 )  program codin%, such as syntactic rules for  
program code, and programming language "primitivests; and ( 4 )  E- 
pram comprehension and debugging, such as program functions, 
procedures, and the concepts necessary for problem understanding. 



Since the adult Literature is of Little assistance in determining what 
type and level of a learner's cognitive characteristics may influence 
the developmental course of computer programming learning, how 
might one identify the factors that influence whether or not a c h l d  
will benefit from programming experience or  develop proficiency in 
computer programming? Sheil (1980) suggests that many of the rules 
one needs to learn for computer programming are  minor variants on 
already mastered skills from other domains, such as the quasi-pro- 
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cedural knowledge of how to give/follow task instructions, directions 
and recipes, and the semantics of conditionals, temporal ordering, 
and causality. Sheil argues that one would expect such background 
knowledge to provide fundamental enabling skills which programming 
students apply by analogy in learning computer programming. 
Whether knowledge of this h n d  is necessary to learn to program is 
unlikely; i t  may however help facilitate learning the concepts o f  
procedurality and sequentiality as children learn to program. 

Defining the Cognitive Prerequisites for Learning Computer Program- 
ming: Where to Begin 

What are  some of the most plausible a priori candidates for cognitive 
demands of programming? In asking this question, we find ourselves 
again confronted with the question of what learning computer pro- 
gramming means. Thus far, we have been able to describe some of 
the component mental abilities of advanced programming skdl in 
adults. This issue of expertise in computer programming is central to 
any discussion of demands, since we must always ask: ma em and^ in 
order to do what?n 

While no research has been directly aimed at  defining the cognitive 
prerequisites for learning computer programming (i t  has asked who 
will  do i t  bet ter ,  predictively, rather than who can do i t  at all), at 
least five factors have been mentioned frequently: (1) mathematical 
ability, ( 2 )  memory capacity, ( 3 )  analogical reasoning skills, ( 4 )  con- 
ditional reasoning skills, and ( 5 ) procedural thinking skills. These 
cognitive abilities a re  presumed to have an impact on or to mediate 
computer programming learning in a number of ways. 

1) Mathematical ability. In addition to general intelligence, it 
has frequently been suggested that computer programming s k d  is 
linked to general mathematical ability. Historically, computers were 
developed to aid in the solution of difficult mathematical problems. 
Despite the fact that today m a n y  computer uses have very little t o  do 
with mathematics (e .  g . , database management, word processing, 
games, graphic design) ,  the notion has persisted that to work w i t h  
computers one should be mathematically sophsticated. Media accounts 



of children using computers in schools have perpetuated the common 
belief that computer programming is the province of math whzzes. 

To our knowledge, there is no evidence that any relationship - 
exists between general math ability and computer programming slull, 
once general ability has been factored out. For example, in some of 
our own work we found that better Logo programmers were also high 
math achievers. However, these children also had generally high 
scores in English, social studies, and their other academic subjects as 
well. Thus, attributing their high performance in computer program- 
ming to their math ability ignores the relationship between math 
ability and general intelligence. Nonetheless, general math ability per  
se  cannot yet be ruled out as a possible prerequisite to the success- 
ful mastery of computer programming skills. 

2 )  Memory capacity. I t  is frequently observed that computer 
programming is a memory-intensive enterpfise that requires great 
concentration and the ability to juggle values of a number of param- 
eters at one time. Thus,  individual differences in processing capac- 
ity are likely to influence who becomes a good programmer, on the 
hypothesis that s m a l l  spans make programming too effortful. Tradi- 
tional forward and backward span tasks,  as well as the more recently 
developed transformational span measures (see Case & Kurland 1980; 
Case, Kurland & Goldberg, 1982), are  frequently cited as indexing 
processes basic to learning. These demand measures assess how 
much information a s tudent  can coordinate a t  a given moment. For 
example, the Counting-Span Task (Case, Kurland & Goldberg, 1982) 
requires students to perform a sequence of cognitive operations 
( s ~ m t i n g ,  in this case) while retaining the products of each indi- 
vidual operation for k t e r  recall. Tasks such as this have been 
shown to correlate reliably with general intelligence, Piagetian de- 
velopmental level, and ability to learn and use problem-solving strate- 
gies (e.g., Hunt, 1978). They Rave not thus  f a r  been utilized in re- 
search on computer programming skiU development. 

3 )  halogica l  reasoning sklPs. I t  is conceivable that an . indi- 
vidual may have relevant background knowledge and capacities, yet 
neither connect them to the computer programming domain, nor make 
the transfer connections from computer programming to other domains 
during or after the learning of computer programming. This issue of 
the retrievabilit-y ar nacsess" of knowledge is absalutely fundamental 
t~ learning and problem salving throughout the course of life ( e - g . ,  
Brown, l 9 8 2 ) .  and the general role of andagy in problem solving and 
interpretative processes is widely recognized (MilPer, 1979) .  These 
critical transfers by analogy of knowledge and strategies, both "into" 
and "out ofn the learning of computer programming depend to some 



extent on the availability of general analogical thinking sh l l s .  Tasks 
designed to measure ability for engaging in analogical thinking (e.  g . , 
Sternberg & Riflcin, 1979) or  used in cognitive studies of analogical 
thinking (e.g. ,  Gick & Holyoak, 1980, 1983; Holyoak, 1983) may 
serve as one key predictor of level of computer programming develop- 
ment and the quality and extent of transfer outcomes to be expected. 

In one specific application of the uses of analogical thinhng for 
learning computer programming, Mayer (1975, 1981) has argued that 
students c mmonly learn computer programming by comparing the flow 2 
of control intrinsic to computational devices to that of physico- 
mechanical models they already possess. And duBoulay and O'Shea 
(1976, 1978) have successfully used extensive analogical modeling as a 
means of explaining computer functioning to beginning 12-year-old 
Logo programming students.  

4 )  Conditional reasoning skills. A major component in computer 
programming, once past the elementary stages,  is being able to 
handle conditional statements. Conditional commands underlie the 
operation of loops, tes ts ,  input checking, and a host of other pro- 
gramming functions. It is reasonable, therefore, to assume that a 
student who has sufficient understanding of conditional logic--the 
various "if...thenI1 control s t ructures  and the predicate logical con- 
nectives of negation, ' conjunction, and disjunction--will be a more 
successful programmer than a student who has trouble monitoring the 
control flow and data flow through conditional statements. 

5 )  Procedural thinking skills. There are several kinds of quasi- 
procedural, everyday thought which may have a direct bearing on the 
facility with which a learner masters the "flow of control" procedur "t 
metaphor that is central to understanding computer programming. 
Those which have been suggested include giving and following com- 
plex instructions (as  in building a model), writing or following reci- 
pes, and concocting or carrying out directions for travel. Presum- 
ably, individuals who have a greater familiarity with these linear 
procedures that are analogous to the flow of control for commands in 
a computer program will more readily come to grips with the "proce- 
dural thinking " t o u t e d  as a central component of computer program- 
ming expertise (Papert .  1980; Sheil, 1980). 

Types of Programming 

It is widely recognized within the computer science community that 
there are different types of programming. By the 1960s .  McNarnara, 
one of the developers of the widely used IBM Programmer Aptitude 
Test,  had recognized the need to develop new tests which would 



guide the selection of different types of programming jobs: "for 
instance, systems programming, applications programming, diagnostic 
programming, or program maintenance" (McNamara, 196'9, p. 56). 
People are recruited for careers in industry,  the military, for soft- 
ware houses, for educational companies, for videogame companies, not 
as programmers per se ,  but to do programming 0% a specific kind. 
We have indicated the importance of cognitive theories of what expert 
programmers do h conceptualizing the problems of the cognitive 
demands of programming. This point regarding the differentiation of 
types of programming activity in the adult programming community 
adds yet another layer of complexity to the problem, one whch is not 
explicitly recognized even in the cognitive science literature on pro- 
gramming. Although it  is acknowledged in that literature that " the 
programmer knowledge base" is an integral aspect of programming 
performance, studies so far have been concerned with problems that 
minimize the effect of domain-specific knowledge on programming 
(e.g., Jeffries, Turner ,  Polson & Atwood, 1981). Yet for the child 
learning to program, speafic  content problems will be worked on as 
she learns to program; thus ,  we h o w  correspondingly little about the 
new developmental concerns raised. 

Shneiderman (1980, p. 40) indicates some of these complexities in his 
discussion of types of programmers. He first  distinguishes between 
three general types of programmers based on extent of effort ex- 
pended in programming activity: (1) professional programmers ; 
( 2 )  occasional programmers; and ( 3 )  programmer hobbyists. Under 
the ' category of professianal programmers, he then distinguishes - .  " 1.11 systems programmers [who] work on operating systems, com- 
pilers or utilities that are used by [1.2] application programmers, 
who solve user problems. As examples sf application programs, he 

- - 

lists banking, reservations, payroll, personnel management, accounts 
receivable, data collection, statistical analysis, inventory, and man- 
agement reporting systems. Other types of applications for the 
professional programmer are videogame programs, educational pro- 
grams and simulations, and military application programs such as  
battle simulations. For occasional programmers, specialties also 
emerge; those Shneiderman lists are : ( 2 . 1  ) scientific research, 
( 2 . 2 )  engineering development, ( 2 . 3 )  marketing research, and ( 2 . 4 )  
business applications (such as the types of applications programs 
listed above). For the hobbyist, types 0% programs may be of great 
diversity, such as small business application programs, hame financial 
management programs, home inventory programs, and even music 
composition. 

We may continue this differentiation process of asking about dfferenf 
types of programming by turning to hiring ads for programmers, in 



which we expect tacit theories of programming specialization to be 
made manifest. In the "Help Wanted" section of The New York Times 
for March 28, 1983, for example, ads for programmers emphasized 
either: (1) type of programming by content area (systems software; 
applications development: actuarial, banking and investment, telecom- 
munications, database, financial, g raphcs  , military, payrolllaccount- 
ing , robotics, scientificlengineering 1 R & D )  ; ( 2 )  type of programming 
by programming language (e. g . , Assembly, APL, Bal, BASIC Plus, 
Unix-C, CICS, COBOL, Dibol, DOSI VS, FORTRAN, IMS, Macro, 
PASCAL, PL-1, WG); (3) type of programming in terms of specific 
h e  ( s )  of computer programming environment ( s )  (e.  g . , Burroughs, 
DEC PDP-11, HP3000, IBM Systems 38 ,  IBM 3601370, IBM 3033, micro- 
computers, Prime, VAX 780, Wang) ; ( 4 )  a combination of ( 2 )  and ( 3 ) ,  
e. g . ,  PASCAL on microcomputers; or ( 5 )  a combination of (1) , ( 2 )  , 
and ( 3 )  e. g . , FORTRANJCOBOL actuarial background with IBM 
experience desired. In one case, the "demands" question was even 
directly addressed: "For] securities industry,  we need strong math 
foundation including heavy calculus, probability theory and differen- 
tial equations to provide financial research information to fixed income 
and other types of securities traders.  " 

Different Evaluative Criteria for Different Kinds of Pronramminn 

There is no one evaluative scheme for assessing programming 
competency. Evaluation of such competency is necessarily differ en t 
for public ( i  e. , business, scientific, o r  game programming) , 
personal, and educational programming (in which clarity of exposition 
rather than utility or  pragmatic value is important). In industry1 
business, the emphasis is  on rapid programming; in games, compact 
code; in some educational software, developmental s t ructure of materi- 
als and problems. Personal programming may be workable, buggy, 
undocumented, and unreliable for some inputs which might be entered 
if other people were to use the program. For scientific programming, 
the main criteria are  speed of code execution, provability, and accur- 
acy. For videogame programming, the criteria are: "packing more 
power into smaller spaces. Increasing resolution. Controlling cost. 
Maximizing quality" Parker Brothers advertisement for videogame 
designers). For public programming, the need is for brevity, and 
comprehensibility to a general audience (Shneiderman, 1980). With 
new types of programming and new markets for programs continually 
being created, the demands will evolve accordingly, as will the soft- 
ware quality metrics necessary to evaluate them. 

Rich Versus Impoverished Programming Environments for Children 

Educational programming environments for precollege-age individuals, 
are often impoverished, in the sense that the kinds of tool and utility 



programs used by mature programmers to develop their programs are  
"not a1lowed"for the classroom. Often, teachers do not want c h l -  
dren looking at  programming language manuals where example pro- 
grams are listed. Why is this? Although we have not seen this point 
of view made explicit in programming curricular materials or teacher 
training for programming instruction, we have heard teachers say 
that this emphasis is due to the teacher's belief that children must 
think through the chunks of programming operations that are  
"givens" the tools and utilities. It is as if children will never be 
able to analyze these tools and fully understand them unless they 
themselves participate in their development. There is  a correspond- 
ing fear of rote program use. This attitude might be viewed by some 
as analogous to a current  controversy about the use of hand calcu- 
lators by children: will using them for addition, multiplication, and 
so on make the children incapable of doing these arithmetical opera- 
tions without a calculator? But the connection between this example 
and programming tools is weak. Without taking a position on the 
calculator example, we may note that how programming tools and 
utility programs are  used may be determined by  the teacher; the 
teacher may have children explain how the programs work, and learn 
whatever programming concepts are  necessary for unpacking the 
function and s t ruc ture  of the constituent par ts  of the program. We 
believe that,  just as children can learn important lessons by reading 
great literature, and even rewriting i t  with different literary pur- 
poses in mind, so may they gain programming knowledge and pro- 
gramming skill through having at their disposal the powerful pro- 
gramming tool kits and utility programs that aid the program devel- 
opment process. 

We would apply the same point to the use of algorithms in program- 
ming by children. Adults are  not expected to discover all the pro- 
gramming tricks and algorithms, but m u s t  learn them. The same 
should apply to programming instruction for children. 

Individual Versus Team Procrram Develo~ment 

It is naive to think that the way to assess expertise is to put people 
alone in a room and require them to generate in a given length of 
time a program that conforms to certain specifications. Not only is 
the relationship between rate of programming and program c~uality not - 
well understood (Brooks, 19821, but requiring a person to program 
with no access to manuads or other people's help does not reflect the 
w a y  good programmers do their work. Kn many work settings, pra- 
grams are being written by design teams made up of program design- 
e r s ,  managers, and coders working with formative researchers in a 
collaborative environment. It has been recognized that one person 



may not be decentered enough to design, implement, and verify a 
program. The collaborative nature of today's programming bespeaks a 
similar orientation in programming instruction. Perhaps the best way 
to teach children to program is as apprentices, rather than as soli- 
tary students learning facts. One consequence of this view is that 
the usual question: "hat are the demands for learning program- 
ming?n changes to: "What must one know to be a good member of a 
design team?n This may be the question to ask rather than: "What 
does one need to know to be able to design, implement, document, 
and verify a program all by oneself?" Learning to be explicit about 
how to design a program, and the details one needs to give to the 
isnplementers may be a much more important goal of teaching computer 
programming than arranging instruction so that each child can write 
an entire program by himself. In fact, with the recent advent of 
menu-driven automatic program-generating programs (such as - The 
Last One for BASIC or Quickcode for generating dBase programs), 
the day may be approaching when "programmingn will mean specifying 
the design of the program. This characterization of the program 
creation process, however, still leaves open the questions of the point 
at which a division of labor is necessary or desirable, and the point 
at which the emphasis can be switched from implementation to design. 

How Do Data on Programmer A ~ t i t u d e s  and Abilities H e l ~  U s ?  

The standard multivariate approach to the cognitive demands of 
programming i s  to s tudy aptitude1 treatment interactions. The studies 
we will review almost always ask what cognitive profile i t  "takes" to 
become a programmer, o r  what previous specific or general mental 
abilities are required for subsequent success in learning to program. 

It is of some importance to remark briefly on the historical founda- 
tions of research on ncomputer programming aptitudes," of which 
several hundred studies exist (see reviews in Ricardo, 1983; Schmidt 
et  d., 1979). During the early 1950s, tests were developed in order 
that companies who required programmers would have better selection 
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criteria for computer trainees than they would through interviews and 
work history alone. Not until years later were these tests and others 
further developed in order  to select individuals for programming 
education at the college level (McNamara, 1967). The extension of 
the predictive validity of programming aptitude tests to actual pro- 
gramming job performance, rather than success in an industrial 
training course or a college programming course, has always been 
problematical (e. g . , Bell, 1976). 

One expecting answers from closely inspecting this multivariate liter- 
ature about the "demands of learning to program," or from our goal- 



indexed version of this question discussed earlier, will be disap- 
pointed. The tests were commonly developed by interviewing pro- 
gramming managers about the skills that good programmers seemed to 
have ( McNamara, 1967; McNamara & Hughes, 1961) , and then looking 
for test items that appeared to test for that ability (e.g., "logical 
r ea son inghr  "mathematical reasoning" ) in existing intelligence tests. 
Although most studies in whish programming aptitude test scores 
correlated significantly with programming "ssucess"(general1y indi- 
cated by grades in industrial programming training courses or college 
programming courses) observed that "general intelligence'! (when test 
scores were available) also correlated very highly with programming - 
success, this does not seem to have moved the researchers to go 
further and ask whether the "programming aptitude" supposedly 
linked to programming skill constituted a specific aptitude factor 
above and beyond "general intelligence."We suspect that it may not. 
In fact, one survey (Mayer & Stalnaker, 1968) revealed that many 
companies use intelligence tests as their predictors of programmer 
success. In a general review of the computer personnel research 
presented to ACM Special Interest Group in Computer Personnel 
Research, Stalnaker says: "I think that if we have to have a very 
concise summary of our current knowledge, it is that the more intel- 
ligent person you can find, the better programmer you can probably 
get." If these observations are valid, the lesson from the many 
studies of predictive validity of programming aptitude tests is not so 
profound--those who do well on school-based intelligence tests are 
also likely to do well  on programming aptitude tests. In any case, 
and more importantly, the findings of this multivariate literature are 
tangential to the questions we have posited as the central ones, that 
is, those pertaining to whether and how specific thinking skills 
identifiable in the practice of expert programmers are manifested in 
individuals d m g  the process of learning to program. 

It is interesting to note that close observations of the actual practice 
s f  programming, and the sequence of mental tasks required during 
program development was rarely undertaken. Even the most differen- 
tiated analysis of "what programmers do" (Berger, 1969) results in 
categories that have not really been unpacked in terms of their 
cognitive subtasks. The outcome of Berger's analysis was the follow- 
ing list of the seventeen major interpretable factors of programming 
and s y s t e m s  analysis: 

PROGRAM PRODUCTION 

P. General programming operations 
2 .  Debugging 
3. Programming real time systems 



4. Lead programming responsibilities 
5. Program production for special purpose computers 
6 .  Program production planning and scheduling 
7. Program production supervision 
8. Utility program development (executives and compilers ) 
9. Utility program development (general purpose and library) 

10. Program diagramming and testing 

PROGRAM ANALYSIS AND DESIGN 

11. Program system analysis (business and logistics) 
12. Program system analysis and design 

PROGRAMMING'S PERIPHERAL TASKS 

13. Program system integration 
14. Program system testing 
15. Program installation or modification consulting 
16. Program documentation 
17. Training 

On Measuring Programmer Aptitude in Adults 

Two important recent studies that explode the myth of the nonbusi- 
ness student "who can't program" have been carried out by Ledbetter 
(1975) and Lemos (1981). In each case, when careful comparisons 
were made between large groups of business and nonbusiness college 
majors, no significant differences were found in programming language 
learning capability between the groups. This is a significant finding 
because in many universities, nonbusiness majors are assumed not to 
have the "necessary background skil1s"for learning computer pro- 
gramming and are taught about it rather than being given hands-on 
experience. 

Probably the best known test instrument used to measure aptitude for 
programming is the PAT (Programmer's Aptitude Test ) ,  developed by 
IBM during the 1950s to select programmer trainees. We will briefly 
review this aad other measures, and the dominant findings of modest 
correlations between scores on these aptitude batteries and various 
progr.amming skill outcome measures, such as  success in a first col- 
lege programming course or a company's programming training pro- 
gram. But a central problem with such measures was noted by 
Weinberg (1971) some time ago in hs pioneering book on the psychol- 
ogy of programming, in reference to the PAT: "Admittedly, it does 
predict scores in programming courses fairly well, but that is not 
what we are buying when w e  hire a programmer" (p. 173). 



Many measures of programming aptitude have been developed for 
which independent validation reports are unavailable. Among the 
measures studies most intensively and used during the last three 
decades, the most prominent are: 

Programmer Aptitude Test (PAT). IBM developed three different 
versions of the Programmer Aptitude Test (PAT) between 1955 and 
1965, all of which have been out of print since 1973. The final ver- 
sion consisted of letter series, figure analogies, and arithmetical 
reasoning subparts. 

Computer Programmer Aptitude Battery (CPAB) . The CPAB , 
developed by Science Research Associates, consists of verbal mean- 
ing, reasoning, letter series, number ability, and diagramming sub- 
parts. 

The Wolfe Programming Aptitude Tests (WPAT). (1) Aptitude 
Assessment Battery: Programming; (2)  Programming Aptitude Test: 
School Edition. "The test measures. . . accuracy, deductive ability, 
reading comprehension of a complicated and extended explanation of a 
kind found in programming reference manuals, ability to grasp new 
and difficult concepts from a written explanation, and ability to 
reason w i t h  symbols"Wolfe, 1969, p. 67). 

FOP a thorough review of validation studies carried out on these 
different programming aptitude measures, see Ricardo (1983). A few 
examples will suffice for our purposes. 

The most comprehensive and critical study examining computer pro- 
gramming aptitude tests and their predictive validity of which we are 
aware was carried out by Schmidt, Hunter, McKenzie and Muldrow 
(1979). Of the 161 studies they uncovered, 150 used the PAT and 
most of the others used the CPAB. Schmidt et ale outline two inno- 
vative Bayesian procedures for establishing validity generalization, 
and found that "the (multivariate) total PAT score validity is high for 
predicting performance of computer programmers and that this validity 
is essentially constant across situations. " T h e i r  second method 
extends this conclusion for success in training programs as well. 

In one extensive study,  Ricardo (198%) used five factors (deductive 
reasoning, inductive reasoning, persistence, SAT verbal score, S A T  
math score) as a model. f ~ r  predicting success in a first programming 
course in eolllege (in the programming language PL-1).  She chose 
inductive reasoning as a target ability, since the PAT and CPAB 
validations generally found the figure analogies and (number or 
letter) series subtests most reliable in predicting programming success 



(by the limited measures of "success" used).  A s  McNamara (1967) ,  
one of the developers of the PAT, noted: "there appeared to be one 
basic requirement for a good programmer; that was analytic ability or 
logical reasoning abilityn (p. 53) .  The reasoning for the use of this 
measure is typical of this genre of literature: 

The process of looking at items and discovering a rule is 
used in programming when a student must examine output 
received and predict future output. This is necessary 
when he has to determine where an  error exists in an 
algorithm. The two methods of testing inductive reasoning 
which are used in this test [her Programming Readiness 
Test] are figure relationships and number series. In the 
figure relationships, the student is given two figures which 
are related in some way, and a third figure. He then has 
to select a fourth figure which preserves the relationship 
with the third. Some of the possible relationships between 
figures are the symmetries of translation, rotation, reflec- 
tion, and glide reflection, variations in size, in number of 
sides and vertices, symmetry of part of a figure, shading 
of portions of a figure and decomposition of a figure. Ln 
number series, the student is given several numbers which 
are related by some rule, and he must select the next 
number. Some of the relationships which can be presented 
are arithmetic progression, geometric progression, addition 
of a variable whose value is itself a progression, alternating 
sets of terms of two different progressions, and power 
series. 

Similarly, deductive reasoning is chosen since : 

The content area in programming which requires the appli- 
cation of deductive reasoning is decision making. This 
ability is needed in interpreting problem situations so that 
they may be expressed in algorithmic forms. Specifically, 
each condition of a problem must be reduced to a proposi- 
tion, either simple or compound, which must be evaluated 
as true or false. Testing of algorithms requires the recog- 
nition of the processes of both positing and negating logical 
propositions. It is also essential that the student under- 
stand the applications of logical conjunction, disjunction. 
implication, and negation in interpreting the conditions of 
the problem. These applications are tested by the use of 
syllogisms. The meaning of existential and universal quan- 
tifiers, and the negation of statements using them, are also 
tested. (p .  66) 



She found that all five of her  variables were significant predictors of 
success in the semester-long programming course, in terms of either 
final exam grade or  final grade (multiple R of .63 for final exam score 
and .56 using semester final grade) .  Like Mazlack (1980), she re- 
ported that year in school, sex,  prior programming experience, and 
type of major correlated insignificantly or poorly with criteria of 
success such as tes t  scores,  final examination score,  and final semes- 
ter grade. Using all five factors a multiple regression analysis 
revealed a multiple R of .59 for final semester grade. 

In many studies investigating the relationship between programming 
aptitude test scores and success in programming courses, college 
grade point average often correlated as highly with programming 
success measures (indicated by test ,  semester grades,  or scores) as  
did the aptitude test  scores (e .g . ,  Bateman, 1973; Bauer, Mehrens & 

Vinsonhaler , 1968 ; Fowler & Glorfeld, 1981 ; Ledbetter, 1975 ; Mazlack , 
1980; Newstead, 1975; Peterson & Howe, 1979; Stephens, Wileman & 

Konvalina, 1981) . This raises some question about the generaliz- 
ability of college measures of programming success to on-the-job pro- 
gramming success, since ncollege grade point averages of programmers 
have been shown to have no predictive value for programming per- 
formance"(Mayer & Stalnaker, 1968, p.  659). 

Legal Aspects of Programming Aptitude Testing 

It is of some interest  that programming aptitude testing has come 
under substantial criticism developing out of the August 1966, Equal 
Employment Opportunity Commission (EEOC) Guidelines on Employment 
Testing Procedures, making all test  users responsible for assuring 
that tests do not contain racial or cultural bias, a d  for ensuring 
current performance-related test score validity. The 1945 Supreme 
Court opinion in Albermarle Paper Cs. vs. Moody now requires as  
law that preemployment tes ts  be demonstrated as "predictive of o r  - 
s i g ~ f i c a n t l y  correlated with important elements of work behavior 
which comprise o r  a r e  relevant to the job or jobs for whish candidates 
are  being evaluatedn (Ledvinka & Sshoenfeldt , 19'78). Warten (1982) , 
in i n t e ~ e w s  carried out for an indepth article on Aptitude Tests for 
Computer World, found that the consequence of the law for consumers 
of the programming aptitude tests has been that "many of those 
closely involved with programmer trainee selection using aptitude tests 
are cautious about speaking for publication, Some fear involving 
their company in 'lawsuits and EEO actions" (p.  17). 

"Interest hventor iesn  a d  Values of Gom~uter  Science Personnel 

On a related tack, people have taken interest/value inventories of 
programmers and asked: "What are the interests and vdues  of 



programmers and students studying programming that may set them 
apart from nonprogrammers?" The logic of such a question is that if 
one has interests similar to those of persons successful in a specific 
occupation, then one will be more likely to enter that occupation and, 
under some construals, be more Likely to succeed in it. In Wein- 
berg's (1971) influential critique of the use of programmer aptitude 
batteries that are intelligence test-like, he offers his own view that 
"intelligence has less to do with the matter [of programming perform- 
ance] than personality, work habits, and training"(p. 176). Others 
have asked if there is anything to the stereotype of the mechanically 
or mathematically oriented computer scientist who is introverted and 
has "lost value for humanity"(Zimbardo, 1980). Evidence on all 
these counts is weak. Perry and Cannon found that, although there 
are distinctive interests of programmers as indicated by scores for 
the Strong Vocational Interest Battery, the SVIB is not a useful 
predictor of performance in either programming training courses or in 
program production (reviewed by Mayer & Stalnaker, 1968, p. 665) .  

Adult Programmers : Problem-Solving Style 

Testa (1973) used Witkin's measure of "perceptual style," the embed- 
ded figures task (EFT), to study programmer aptitude. The task in- 
volves a series of problems where the test taker must find a specific 
shape in the context of a larger set of other shapes, and the depend- 
ent measure is the time taken to locate the figure. Higher scores are 
viewed as an index of "field independent"c0gnitive style, lower 
scores as an index of "field dependentn cognitive style. Testa found 
a significant correlation between field independence and success in a 
college COBOL programming course as indicated by test grades. The 
explanation for this finding w a s  that "programming requires an ability 
to perceive the whole and a concomitant ability to proceed from the 
general to the par t icular"(p .  50), and "clearly, the EFT must have 
tapped some of the characteristics of the programming t a s k v p .  5 2 ) .  

Cheney (1980) took a similar approach in hypothesizing a significant 
relationship between scores on a BASIC programming examination in a 
college course and "analyticn as opposed to "heuristic"cognitive 
style, as indexed by a questionnaire developed by Barkin (1974) and 
assumed to relate to the EFT'S style categories of field independ- 
enceldependence. He found the scores on these two measures to be 
significantly correlated (r = .82). Cheney suggests that those scor- 
ing highly on the style measure, and presumed to be "analytic," may 
learn programming best by progressing at their own rate on program- 
ming projects, but that the "heuristic" thinkers may require more 
structured and formal teaching to understand how to program. 



In each of these studies, the aim was to develop aptitude measures 
that would predict success in a programming course distinct from 
"mathematically oriented tests." Although they were successful in 
thls limited goal, we do not yet know - how cognitive style may be 
related to programming skill, and the studies do not bear on the more 
important question of how cognitive style may contribute to perform- 
ance on specific p r o g r d g  subtasks. They do offer the sugges- 
tion, however, that cognitive style interacts with how one is taught 
programming, not w i t h  whether one can learn to program. 

" Developmental Level" and the Learnability of Programming 

Beyond asking what general cognitive characteristics may be pre- 
requisite to or mediate a child's learning of computer programming, a 
more specific question has been raised by many: What "developmental 
l e v e l h a y  be required to benefit from computer programming experi- 
ence? In the educational community, the question is more commonly 
phrased as: How old do children "have to ben before learning com- 
puter programming? The g.eneral concept of "developmental leveln at 
the abstract theoretical levels of preoperational, concrete operational, 
and formal operational intellectual functioning has proved to be a 
useful one for developmental and instructional psychology in under- 
standing children's ability to benefit from certain types of learning 
experiences (e. g. , Inhelder, Sinclair & Bovet , 1974). However, the 
very generality of these stage descriptions is not readily applicable to 
the task of understanding the development of specific domains of 
knowledge such as computer p r o g r d g  skill. 

h light of the lack of research on the development of computer 
programming knowledge and strategies, two reasons lead us to reject 
a formulation of the computer skill problem in terms of the concept of 
Ragetian " developmental leveln as inappropriate (Favaro , 1983 ) . 
First, there is considerable evidence that the development and display 
of Piagetian-defined logical abilities is importantly tied to content 
domain (Piaget, 1972), to the eliciting context (Laboratory of Compar- 
ative Human Cognition, 1983), and to the particular experiences of 
imdividuals (Price-Williams , Gordon & Ramirez , 1969) . Since it is not 
apparent why and how different materials affect the "developmental 
leveln of children's performances within. Piagetian experimental tasks, 
it is not feasible to predict what rellationships might inhere between 
computer ppagramming experience and performance on Piagetian tasks. 

O u r  s e c ~ n d  concern with a Piagetian "developmental level" formulatian 
applied to computer programming skill development is that the task of 
learning to program has not thus far been subjected to developmental 
analysis or characterized in terms of its component skills, except 



insofar as we have reviewed earlier in the section on programming as 
a cognitive activity. We thus reject a general developmental level 
formulation as useful for articulating the cognitive demands of specific 
programming skill development, and embrace in i ts  stead an approach 
that is more concept-based. 

Conceptual Development and Programming 

In the literature on child language development, one may find exten- 
sive discussions of the concept of "cognitive prerequisites. " Ln that 
disapline, this concept has been developed as a means of exploring 
the relationships between language development and cognition; in our 
context, the relationships between programming development and 
cognition. Although. many issues are  quite distinct for these two 
disciplines, the sense of cognitive prerequisites used in language 
developmental studies is  illuminating. The fundamental idea is that 
one may ask what mental resources are  required by a particular kind 
of linguistic activity, such as particular spatial concepts and the use 
or understanding of such terms as  "in,"on, " a n d  nuunder" or,  more 
generally, language concerning location (e .g. ,  Johnston, 1982). 
Slobin (1973) suggested two basic types of such mental resources: 
"the conceptual and factual knowledge which gives rise to communica- 
tive intentions, and the cognitive processing mechanisms which partic- 
ipate in rule format ion"(Johns ton ,  op. cit. ) . The question for 
programming is whether there is  a similar set  of cognitive prerequi- 
sites which sets  limits on the conceptual and factual knowledge which 
a child can master for different types of programming or programming 
constructs. 

Since we know of no studies that directly pertain to this question, we 
can only offer a few observations a t  this time. W e  know that preco- 
cious performance is  possible in limited contexts on Piagetian formal 
operational and concrete operational measures. However, it is the 
flexibility of intellectual operations that is constitutive of development 
(Kaplan, 1983 ; Werner, 1 9 5 7 ) .  What is needed a re  methods to identi- 
fy the limits of knowledge use. Cognitive supports in programming 
environments that permit a child to seemingly go beyond his or her 
current level of logical development are  as yet poorly understood 
(e. g . , memory support in the form of catalogues, traces,  listings, 
automatic indenting),  bu t  may allow programming performance that 
would be unexpected given current knowledge of childrenls cognitive 
abilities as measured in other task environments. Before the question 
of what level of conceptual development is necessary for a child to 
learn to program can be answered more fully, we need more data on 
such things as how children actually behave in programming environ- 
ments, what they find difficult, what sorts of models of the computer 



and of programming they utilize, and what compensatory strategies 
they can discover or use to circumvent some of the formal demands of 
programming. 

Conclusions 

Narrow Focus of =sting Research 

A s  our review of the issues and literature concerning the demands of 
learning to program makes evident, most research addressed to the 
aptitude and ability question has taken place within the multivariate 
tradition of looking at aptitude or ability interactions with "treat- 
ments, such as programming training courses, computer science 
courses, or similar programming experiences. But since the majority 
of such studies treat programming as a homogeneous skill, and apti- 
tude or ability as static features of persons, in terms of the issues 
we posited as central in the study of the psychology of programming, 
the conclusions reached by those studies are correspondingly moot. 
And even if these studies were more directly relevant, since they 
were carried out with adults rather than chddren, there would be 
serious questions about their applicability to those of precollege age 
of interest for our purposes. 

Instead, we have shown the necessity of highlighting the different 
types of programming and programmers, the different cognitive sub- 
tasks involved in ppogramming, and the social character of many 
pragramdng efforts, which raises many new research questions to be 
answered. 

nDemands~ues t i ons  Cannot Be Separated from Goals 

It has d so  been argued here that asking what cognitive demands 
programming has for precollege age people is a question which must 
be asked in terms of the goals of the specific programming activities 
s f  concern. This is to say that without specifying which program- 
ming projects or programming concepts are being asked about, one 
cannot answer the question of demands, because "it all depends1'--one 
must ask: "demands of what"? We would expect that a child of 'almost - 
any age, even p r d t e r a t e  toddlers, would be capable of working w i t h  - 
a programmable device for some purposes. Once the focus of the 
demand question has been narrowed to specific programming subtasks 
or specific programming activities, such as learning recursion in 
Logs or writing a bubble sort prcagrapl in BASIC, we ape led to 
difficult questions about a taxonomy of programming activities and 
goals. And we have noted that what is particularly difficult about 
such questions is that the very nature of programming is evolution- 



3, and new goals emerge in tandem with new purposes for which 
programming activities a re  recognized as relevant. 

Central Necessity of Focus on Goals of Computer Education 

With questions about a taxonomy of programming activities in mind, 
we must then go on to ask what are the educational goals of teaching 
children about programming. Is there a core of programming con- 
cepts and techniques, and computer science knowledge, that we would 
define as "basicn in some sense,  to be achieved by  all citizens of our 
nation? Such a core requires definition, and then one may ask what 
cognitive abilities are necessary in order to attain that knowledge, 
and how a curriculum is best designed for the different ages in the 
precollege population. The implication here is that much empirical 
research in school communities will be required to determine the best 
developmental ages for introducing specific programming concepts and 
activities. But the value dimension of the pedagogy of programming 
is one that must be addressed in terms distinct from the learnability 
questions; value questions a re  in a different domain of dscourse-- 
they are  culture-concepts rather  than nature-concep t s  (Cassirer , 
1960; also see Kaplan & Werner, 1983). 

Beyond this core, however i t  is defined (and we have made some 
preliminary recommendations in this repor t ) ,  one may outline different 
specializations in programming, and perhaps define a distribution of 
such specializations that a precollege age programming curriculum 
should contain, for we may wish children to have some level of first- 
hand familiarity with a range of different types of programming before 
they enter college, even if we do not expect them to be competent in 
all of them. 

Individual Versus Social Aspects of Programming Skill 

The dominant view in programming education for children today 
stresses individual achievement of programming skills. Yet we have 
indicated that, in the professions of programming, a much more 
common emphasis is on the development of programs by teams of 
individuals (Brooks, 1982). The different subtasks of developing a 
program--design, coding, evaluation--are worked out as a group, 
with some specializations or  domains of expertise more hgh ly  repre- 
sented in some individuals than others. The advantages of teamwork 
on program development are many: neither the " tyranny,  " "egocen- 
trism, nor "lack of f o r e s i g h t b f  the individual is as llkely to be 
manifested in the finished program (Shneiderman. 1980; Weinberg, 
1971). A s  in Kripke's (1972) discussion of the locus of "knowledge of 
natural language," the community is what is collectively viewed as  



expert, rather thaa individuals. The members of the programming 
collective hold each other in checks and balances in terms of re- 
sponsibility for meeting goals, developing adequate documentation or 
verification, and avoiding abuses of power (with knowledge of how a 
program works private to you as "power"). This team emphasis is 
also apparent in frontier efforts within artificial intelligence to 
develop complex expert systems. 

Limits of Instructability of Programming Concepts 1 Actions 

W e  have dso indicated that there is no research to date which ad- 
dresses the Limits sf instructability of programming at some level of 
expertise for some defined developmental level. Instead, studies have 
dealt with representative instructional settings, in wbch the status 
quo--for example, one teacher for 30 students--is the assumed in- 
itructiond organizational context. What a child of any given age-- 
whether defined chronologically or mentally--is - not able to learn, even 
with massive instruction and practice, is currently unhown. This is 
an issue of some importance. For even if what we are now concerned 
with is what children of a specific age can learn about programming 
given existing educational contexts, ultimately, in the years ahead, 
what we need to know, as sophisticated and less expensive software 
and hardware become available, is whether there &e limits to the 
instmctability of specific programming concepts and activities when 
every child has at -his or her-  disposal an "dealn programming envi- 
ronment in which individualized and self-pased instruction is a real- 
ity. These questions are unanswerable today, but we should recog- 
nize the contkxt-bound nature of our current understanding of chil- 
dren and the development of programming skills. 



Footnotes 

1 
One may distinguish for (artificial) programming languages, just 

as in the case of natural languages, between three major divisions of 
semiotics, or the scientific study of properties of such signalling 
systems (Crystal, 1980) . These three divisions, rooted in the philo- 
sophical studies of Peirce, Carnap, and Morris, are 

SEMANTICS, the s tudy of the relations between linguistic 
expressions and the objects in the world whch they refer 
to or describe; SYNTACTICS, the study of the relation of 
these expressions to each other; and PRAGMATICS, the 
study sf the dependence of the meaning of these expres- 
sions on their users  (including the social situation in which 
they are used) . (p  . 316) 

Pragmatics in earlier times was referred to as "rhetoric." The field 
of pragmatics of natural language has focused on the "study of the 
LANGUAGE from the point of view of the user ,  especially of the 
choices he makes, the CONSTRAINTS he encounters in using language 
in social interaction, and the effects his use of language has on the 
other participants in an act of communication." 

Though there are clearly some important disanalogies to natural 
languages, a pragmatics of programming languages may be said to 
concern at least the s tudy of a programming language or languages 
from the point of view of the user ,  especially of the (design) choices 
he makes in the organization of lines of programming code within 
programs (or software systems),  the constraints he encounters (such 
as the requirements of a debuggable program which is well-docu- 
mented for future comprehension and modification, by himself or other 
users) in using programming language in social contexts, and the 
effects his uses of programming language have on the other partici- 
pants (such as the computer, as  i d e a  interpreter,  or  other humans) 
in an act of communication involving the use of the programming 
language. 

 he concept of "low of controln refers to the sequence of 
operations that a computer program specifies. The need for the term 
emerges because not all control is linear. In linear control, lines of 
programming instructions would be executed in strict  linear order: 
first ,  second, third,  and so on. But in virtually all programming 
languages, various "control structurest1 ( refs . )  are used to allow 
nonlinear control. For example, one may "goto" other lines in the 
program than the next one in BASIC; in such a case the flow of 



control passes to the line of programming code referred to in the 
GOTO statement. Because the "flow of control" for  a program may be 
quite complex, programmers often utilize programming flowcharts, 
either to s e n e  as a high-level plan for the program they will write, 
or to document the flow of control represented in the lines of their 
program. 

'what is "quasi-proceduraln rather than "procedural" about 
giving and following task instructions, directions, and recipes is 
that, unlike the case of procedural instructions in a computer pro- 
gram, there is generally some ambiguity in the everyday examples, 
such that the instructions, directions, and recipes do not always have 
unequivocal meanings (unlike the programming commands), and uncon- 
strained by strict sequentiality, so that one may in many instances 
choose to bypass steps in a recipe or set of instructions, or alter the 
order of steps in their execution. Neither of these options is avail- 
able in the strict procedurality of programmed instructions to the 
computer. Yet the similarities between the everyday examples and the 
case of programming instructions are compelling enough to make their 
designation as "quasi-proceduraln understandable. 
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