
HAL Id: hal-00190477
https://telearn.hal.science/hal-00190477

Submitted on 23 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structuring and merging Distributed Content
Luca Stefanutti, Dietrich Albert, Cord Hockemeyer

To cite this version:
Luca Stefanutti, Dietrich Albert, Cord Hockemeyer. Structuring and merging Distributed Content.
4th International LeGE-WG Workshop - Towards a European Learning Grid Infrastructure: Pro-
gressing with a European Learning Grid Stuttgart, Germany. 27 - 28 April 2004, 2004, Stuttgart,
Germany. pp.4. �hal-00190477�

https://telearn.hal.science/hal-00190477
https://hal.archives-ouvertes.fr


Structuring and Merging
Distributed Content
Luca Stefanutti, Dietrich Albert, Cord Hockemeyer

Department of Psychology, University of Graz
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A flexible approach for structuring and merging distributed learning object is
presented. At the basis of this approach there is a formal representation of a learning
object, called attribute structure. Attribute structures are labeled directed graphs
representing structured information on the learning objects. When two or more
learning objects are merged, the corresponding attribute structures are unified, and
the unified structure is attached to the resulting learning object.
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1. INTRODUCTION

In order to decide which object comes next in presenting a collection of learning objects to a
learner, one might establish some order. Given a set O of learning objects, a surmise relation
on O is any partial order ‘4’ on the learning objects in O. The interpretation of ‘4’ is that, given
any two learning objects o and o′ in O, o 4 o′ holds if a learner who masters o′ also masters o.
The concept of a surmise relation was introduced by [5] as one of the fundamental concepts of
a theoretical framework called Knowledge Space Theory. According to this theory the knowledge
state of a learner is the subset K of all learning objects in O that (s)he masters. A subset K ⊆ Q
is said to be a knowledge state of the surmise relation ‘4’ if o ∈ K and o′ 4 o implies o′ ∈ K
for all learning objects o, o′ ∈ O. Then the collection K of all knowledge states of ‘4’ is called the
knowledge space derived from ‘4’. Knowledge spaces are used for representing and assessing
the knowledge state of a learner (see, e.g.,[5] and [6] in this connection).

The construction of a surmise relation may follow different approaches. After a brief presentation
of an existing approach based on vectors of components of a learning object, we extend
this approach to a more flexible representation called attribute structure [2]. The mathematical
properties of attribute structures make it possible to compare distributed learning objects in terms
of how much informative and how much demanding they are.

2. THE COMPONENT APPROACH

According to the component approach [1, 7], every content object o in O is equipped with an
ordered n-tuple A = 〈a1, a2, . . . , an〉 of attributes where the length n of the attribute n-tuple A
is fixed for all objects. Each attribute ai in A comes from a corresponding attribute set Ci called
the i-th component of the content object. In this sense, given a collection C = {C1, C2, . . . , Cn}
of disjoint attribute sets (or components), each object o ∈ O is equipped with an element of the
Cartesian product P = C1 ×C2 × · · · ×Cn. Usually each component Ci is equipped with a partial
order ‘6i’ so that 〈Ci,6i〉 is in fact a partially ordered set of attributes. The partial order ‘6i’ is
interpreted in the following way: for a, b ∈ Ci, if a 6i b then a learning object characterized by
attribute a is less demanding than a learning object characterized by attribute b. To give a simple
example, it might be postulated that ‘computations involving integer numbers’ (attribute a) are less
demanding than ‘computations involving rational numbers’ (attribute b). A natural order 6 on the
elements in P, the so-called coordinatewise order [4], is derived from the n partial orders ‘6i’ by

〈x1, x2, . . . , xn〉 6 〈y1, y2, . . . , yn〉 ⇐⇒ ∀i : xi 6i yi
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If f : O → P is a mapping assigning an attribute n-tuple to each learning object, then a surmise
relation ‘4’ on the learning objects is established by

o 4 o′ ⇐⇒ f(o) 6 f(o′)

for all o, o′ ∈ O. The mapping f can easily be established even when the learning objects are
distributed (see, e.g., [8]).

3. ATTRIBUTE STRUCTURES

An attribute structure is used to represent structured information on a learning object or an asset
and in this sense it represents an extension of the attribute n-tupel discussed in Section 2. From
a mathematical standpoint attribute structures correspond to the feature structures introduced by
[3] in computational linguistics. Let C be a set of components and A a collection of attributes, with
A ∩ C = ∅. An attribute structure is a labeled directed graph A = 〈Q, q̄, α, η〉 where:

• Q is a set of nodes of the graph;
• q̄ ∈ Q is the root node of the graph;
• α : Q → A is a partial function assigning attributes to some of the nodes;
• η : Q× C → Q is a partial function specifying the edges of the graph.

As an example, let
C ′ = {picture, topic, subtopic, text, language}

be a set of components, and

A′ = {PICTURE1,TEXT1,ENGLISH,MATH,MATRIX INVERSION}

be a collection of attributes. Suppose moreover that a simple learning object is described by
the asset structure A1 = 〈Q1, q̄1, α1, γ1〉, where Q1 is the set of nodes, q̄1 is the root node, and
α1 and γ1 are defined as follows: α1(0) is not defined, α1(1) = PICTURE1, α1(2) = TEXT1,
α1(3) = MATH, α1(4) = ENGLISH, and α1(5) = MATRIX INVERSION; η1(0,picture) = 1,
η1(0, text) = 2, η1(0, topic) = 3, η1(1, topic) = 3, η1(2, topic) = 3, η1(2, language) = 4, and
η1(3, subtopic) = 5. The digraph representing this attribute structure is displayed in Figure 1.
The structure A1 describes a very simple learning object containing a picure along with some text
explanation. Both text and picture have MATH as topic and MATRIX INVERSION as subtopic.
The root node of the structure is node 0 and it can be easily checked from the figure that each
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FIGURE 1: The attribute structure A1 describes a simple learning object on ‘matrix algebra’

node can be reached from this node following some path in the graph. The root node is the
entry node in the asset structure of the learning object, and the edges departing from this node
specify the main components of the learning object itself. Thus, in our example, the learning
object represented by A1 is defined by three different components: picture, text and topic. The
values of these three components are the attributes given by α1(η1(0,picture)) = PICTURE1,
α1(η1(0, text)) = DESCRIPTION, α1(η1(0, topic)) = MATH.

Observe, for instance that node 5 can be reached from node 0 following the path
〈picture, topic, subtopic〉. The fact that, in this example, each node is reachable from the root
node through some path is not a coincidence. It is explicitly required that every node in an attribute
structure be reachable from the root node.
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4. COMPARING AND COMBINING ATTRIBUTE STRUCTURES

Attribute structures can be compared one another. Informally, an attribute structure A subsumes
another attribute structure A′ (denoted by A v A′) if A′ contains at least the same information as
A. In this sense an attribute structure can be thought as a class of learning objects (the class of
all learning objects represented by that structure), and ‘v’ can be regarded as a partial order on
such classes. Formally, an attribute structureA = 〈Q, q̄, α, η〉 subsumes another attribute structure
A′ = 〈Q′, q̄′, α′, η′〉 if there exists a mapping h : Q → Q′ fulfilling the three conditions

(1) h(q̄) = q̄′;

(2) for all q ∈ Q and all c ∈ C, if η(q, c) is defined then h(η(q, c)) = η′(h(q), c);

(3) for all q ∈ Q, if α(q) is defined then α(q) = α′(h(q)).

In Section 2 the attribute sets were assumed to be partially ordered according to pedagogical
criteria and/or cognitive demands. Similarly we assume now that a partial order ‘6’ is defined
on the set A of attributes so that, given two attributes a, b ∈ A, if a 6 b then a learning object
defined by attribute a is less demanding than a learning object defined by attribute b. Then the
subsumption relation ‘v’ is made consistent with ‘6’ if condition (3) is replaced by

(4) for all q ∈ Q, if α(q) is defined then α(q) 6 α′(h(q)).

According to this new definition, if A v B then A is either less informative than B or less
demanding than B or both.

As an example consider the three attribute structures depicted in Figure 2. Assuming that
MATRIX PRODUCT 6 MATRIX INVERSION, both mappings g and h fulfill conditions (1), (2)
and (4), thus both attribute structures labeled by LO2 and LO3 subsume the attribute structure
labeled by LO1. However there is neither mapping from LO2 to LO3 fulfilling the subsumption
conditions, nor the opposite, thus these last two structures are incomparable to each other. The
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FIGURE 2: Both LO2 and LO3 subsume LO1. However LO2 and LO3 are incomparable.

derivation of a surmise relation for the learning objects parallels that established in section 2. If
s : o 7→ s(o) is a mapping assigning an attribute structure to each learning object, then a surmise
relation ‘4’ on the learning objects is derived by

o 4 o′ ⇐⇒ s(o) v s(o′)

for all o, o′ ∈ O.

Two binary operations are defined on attribute structures: unification and generalization.
Mathematically, the unification of two attribute structures A and B (denoted by AtB), when exists,
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FIGURE 3: Generalization of two asset structures

is the least upper bound of {A,B} with respect to the subsumption relation. Dually, generalization
(denoted by A u B) is the greatest lower bound. In particular, for any two attribute structures A
and B it holds that

A v A t B, B v A t B
A u B v A, A u B v B

When two different learning objects are merged together, or when different assets are assembled
into a single learning object, the corresponding attribute structures are unified, and the
resulting attribute structure is assigned to the resulting learning object. On the other hand, the
generalization operation is used to find the common structure of two or more learning objects
or, stated another way, to classify learning objects. An example of the generalization operation
applied to two attribute structures is shown in Figure 3. Here, the resulting structure shows that
two learning objects have in common topic and subtopic. Generalized attribute structures can also
be used e.g. for searching a distributed environment for all learning objects whose structure is
consistent with a certain ‘template’ (for instance to find out all learning objects that are ‘problems’
involving, as cognitive operation, ‘recognition’ rather than ‘recall’).
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