G. Arsac, G. Germain, and M. Mante, Problème ouvert et situation -problème, 1988.

F. Arzarello, F. Olivero, D. Paola, and O. Robutti, A cognitive analysis of dragging practises in Cabri environments, Zentralblatt fur Didaktik der Mathematik, pp.66-72, 2002.
DOI : 10.1007/BF02655708

T. Fujita and K. Jones, The bridge between practical and deductive geometry: Developing the 'geometrical eye, Proceedings of the 26th conference of the international group for the psychology of mathematics education, pp.384-391, 2002.

C. Godfrey, The Board of Education Circular on the Teaching of Geometry, The Mathematical Gazette, vol.5, issue.84, pp.195-200, 1910.
DOI : 10.2307/3603140

R. Hölzl, Using dynamic geometry software to add contrast to geometric situations a case study, International Journal of Computers for Mathematical Learning, vol.6, issue.1, pp.63-86, 2001.
DOI : 10.1023/A:1011464425023

C. Laborde, The hidden role of diagrams in pupils' construction of meaning in geometry, Meaning in mathematics education, pp.1-21, 2004.

M. A. Mariotti, Introduction to proof: The mediation of a dynamic software environment, Educational Studies in Mathematics, vol.44, issue.1/2, pp.25-54, 2000.
DOI : 10.1023/A:1012733122556

M. A. Mariotti, Influence of technologies advances on students' maths learning, Handbook of international research in mathematics education, pp.695-721, 2002.

F. Olivero, The proving process within a dynamic geometry environment, Bristol: University of Bristol, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00190412

F. Olivero and O. Robutti, Measuring in cabri as a bridge between perception and theory, Proceedings of the 25th conference of the international group for the psychology of mathematics education, pp.9-16, 2001.