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Abstract 
 
Relating multiple representations and translating between them is important to acquire 
deeper knowledge about a domain. To relate representations, learners have to mentally 
search for similarities and differences. To translate between representations, learners 
need to interpret the effects that changes in one representation have on corresponding 
representations. The question is how presenting representations may improve or hinder 
the processes of relation and translation. In this study we examined the effect of 
sequencing dynamic representations on learning outcomes. Two versions of the same 
simulation-based learning environment, that of the physics topic of moments, were 
compared: a learning environment providing the representations step-by-step 
(experimental condition) and a learning environment providing all representations at 
once (control condition). The subjects were 120 students from secondary vocational 
education (aged 15 to 21). Overall, we found the subjects learned from working in the 
learning environment; the post-test scores on the domain and understanding items were 
significantly better than the pre-test scores. This was true for both the subjects with 
and without prior knowledge on the domain. Moreover, the subjects with prior 
knowledge scored significantly better on both the pre-test and the post-test compared 
to the subjects without prior knowledge. Despite our expectations, no differences were 
found between the two experimental conditions. The subjects learned equally well 
regardless of the way in which the representations were presented. Also, the extent to 
which the subjects’ experienced complexity of both the topic and the learning 
environment did not differ between the experimental conditions. 
 
Keywords: Multiple representations; Instructional technology; Scientific discovery 
learning; Simulation-based learning environment 

1 Introduction 

By using multiple representations in simulation-based learning environments, 
learners are assumed to acquire deeper knowledge about a domain and therefore to be 
able to use their knowledge in other learning situations. Mental transference between 
representations forces learners to reflect beyond the boundaries and details of the first  

 
 

______________ 
*  Corresponding author. Tel.: +31 53 489/4359; fax: +31 53 489 2849. 
 E-mail addresses: j.vandermeij@utwente.nl (J. van der Meij), a.j.m.dejong@utwente.nl (T. de Jong). 
 
© 2006 University of Twente, Enschede 

 



J. van der Meij, T. de Jong / EARLI SIG2 meeting 2006 1-16                               2 

representation to anticipate on correspondences in the second (Petre, Blackwell, & 
Green, 1998). This is believed to lead to a deeper level of cognitive processing and 
may expose glitches that might otherwise have been missed. A familiar representation 
can support understanding, and reasoning with, unfamiliar ones (the constraining 
function; Ainsworth (1999)). In addition, representations can complement each other 
by containing complementary information or by supporting different complementary 
processes (the complementing function; Ainsworth (1999)). 

In a multi-representational learning environment, learners can choose those 
representations that fit their prior knowledge and preference (Ainsworth, 1999). 
However, to be able to learn from multiple representations, learners have to: (1) 
understand the syntax of each representation; (2) understand which parts of the domain 
are represented; (3) relate the representations to each other if the representations are 
(partially) redundant; and (4) translate between the representations, that is, interpret 
similarities and differences of corresponding features of two or more representations 
(van der Meij & de Jong, in press). Several studies (e.g., Kozma, 2003; e.g., 
Tabachneck, Leonardo, & Simon, 1994) have shown the last two abilities – relating 
and translating between representations – are difficult for learners. This is problematic, 
because these cognitive processes are important for deeper learning to occur. Learners 
find most difficulty in translating between representations with different 
representational codes (for example, pictorial, arithmetical or textual) (Ainsworth, 
1999).  

This leads to an interesting question for instructional designers: can the way in 
which multiple representations are offered improve or hinder the cognitive processes 
of relating and translating? 

1.1 Supporting the relating and translating process 

An important requirement for learning with multiple representations in 
simulation-based learning environments is how to support learners in the process of 
relating and translating. Both integration and dynamic linking of representations 
(Ainsworth & Peevers, 2003; Chandler & Sweller, 1991; Mayer & Moreno, 1998; van 
der Meij & de Jong, in press) are of proven value. However, both also have their 
limitations and drawbacks. 

1.1.1 Integrating 
Physical integration of representations can make relations between 

representations explicit for the learner (e.g., Chandler & Sweller, 1991). Integrated 
representations appear to be one representation showing different aspects of the 
domain. By integrating representations, relations between them are shown directly to 
the learner. Having all related elements in the same place makes it easier to interpret 
the similarities and differences between corresponding features and therefore 
integration also supports the translation process. Several studies conclude that learning 
with integrated representations leads to better knowledge compared to learning with 
non-integrated representations (Ainsworth & Peevers, 2003; Bodemer, Ploetzner, 
Feuerlein, & Spada, 2004; Chandler & Sweller, 1991; Mayer & Moreno, 1998; 
Tabbers, Martens, & Van Merriënboer, 2000). However, integration does not always 
lead to better learning outcomes. Bodemer et al. (2004) found that learners working 
with integrated representations only learned more compared to learners working with 
non-integrated ones, when they had to actively integrate the representations 
themselves. Moreover, Bodemer and Faust (2006) only found positive effects of active 
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integration when learners were able to integrate the representations correctly. Chandler 
and Sweller (1991) only found positive effects of integration when individual units 
could not be understood separately. 

1.1.2 Dynamic linking 
For simulation-based learning environments with dynamic representations 

(representations that change over time or change according to input of the learner), 
dynamic linking can be provided to make the relations between different 
representations explicit for the learner (Ainsworth, 1999). With dynamically linked 
representations, actions performed on one representation are automatically shown in all 
other representations. If a learner, for example, changes the value of a force in a 
numerical representation, the corresponding representation of the force in an animation 
is updated automatically. It is expected that dynamic linking decreases cognitive load 
by freeing learners from having to establish the relationships between the 
representations (e.g., Kaput, 1989; Scaife & Rogers, 1996). However, a potential 
problem with dynamic linking might be learners’ selective attention to control their 
cognitive load (see Lowe, 1999). With multiple dynamically changing representations, 
learners need to attend to and relate changes that occur simultaneously in different 
regions of various representations. Another problem might be that dynamic linking 
allows a learner to be too passive in the relating and translating processes (Ainsworth, 
1999). Dynamic linking may discourage mental relation and translation, hindering the 
learner to construct the required understanding. Despite the potential problems, 
dynamic linking seems to be a promising approach to support learning with multiple 
representations. 

1.1.3 Integrating plus dynamic linking 
In a study comparing three simulation-based learning environments, van der 

Meij and de Jong (in press) extended known research on integration by examining its 
role using dynamic representations instead of static representations. In three 
experimental conditions, the same learning environment on the physics topic of 
moments was presented using separate, non-linked representations, using separate, 
dynamically linked representations and using integrated, dynamically linked 
representations. Furthermore, they examined the role of the complexity of the domain 
and the learning environment. The learning environment was divided into parts of low 
complexity and high complexity. They found better learning results on domain 
knowledge when the representations were both integrated and dynamically linked. 
However, they did not find learning progress on transfer knowledge, whereas transfer 
is an important argument for using the type of learning environments evaluated in their 
study. The learning environments they used can be characterized as guided discovery 
learning environments (e.g., Mayer, 2004; van Joolingen & de Jong, 2003). In 
discovery learning environments, learners are engaged in active exploration of the 
learning materials in order to understand the concepts of a domain. It is expected that 
learners who explore a domain themselves acquire deeper knowledge of that domain. 
However, they only gain from the discovery process if it is adequately guided by, for 
example, assignments and explanations. 

1.2 Representation progression 

Another way to support learners in simulation-based learning environments, is 
providing model progression (White & Frederiksen, 1990). Model progression 
sequences the learning environment from simple to complex. This study was a first 
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attempt to relate model progression to representational progression. Based on the 
model progression used, we increased the number of representations iteratively. As a 
result, the number of relations and possible translations increased likewise. Starting 
with a few relations and possible translations and then introduce more relations and 
possible translations step-by-step might support learners in relating the representations 
and translating between them. In addition, sequencing the representations might be a 
solution to the selective attention problem mentioned earlier. 

1.3 Research questions 

The goal of this study was to determine if sequencing dynamic representations 
has an effect on learning outcomes. This was examined in a simulation-based learning 
environment with dynamic representations. 

The context of the study was a guided discovery simulation-based learning 
environment called Moments. Subjects studied the physics topic moments by means of 
multiple representations of an open-end spanner tightening a bolt. Two versions of the 
same simulation-based learning environment were compared: a learning environment 
providing the learners with representations introduced step-by-step (experimental 
condition – R-Step) and a learning environment presenting all the representations at 
once (control condition – R-Once). 

2 Method 

The experiment was conducted with subjects who already had and who had no 
prior knowledge about the domain. 

2.1 Subjects 

2.1.1 Subjects with prior knowledge in the domain 
The subjects were students at the end of their first year of secondary vocational 

education. They were between 16 and 19 years old and took either a course in 
mechanical engineering (class 1) or architecture (class 2). Subjects came from two 
schools, and from one class at each school. A between subjects design was used, in 
which participants were randomly assigned to one of the two experimental conditions. 
Thirty-five students started the experiment; two subjects were not representative 
because they were orienting for following the course and of one student the post-test 
results were lost, resulting in analyses done with 32 subjects.  

2.1.2 Subjects without prior knowledge in the domain 
Subjects were students at the start of their first year of secondary vocational 

education. They were between 15 and 21 years old and took either a course in 
mechanical engineering (classes 3 and 6) or architecture (classes 4 and 5). Subjects 
came from two schools, and from one class at school one and three classes at school 
two. A between subjects design was used, in which participants were randomly 
assigned to one of the two experimental conditions. Ninety-five students started the 
experiment; two subjects were not representative because they already participated in a 
subjects with prior knowledge session, two subjects had no Internet access and as a 
result were not able to do the pre-test and post-test, subject identifications of two 
subjects were probably mixed up and one subject was removed from the analyses as an 
outlier (score of 1 on the pre-test); resulting in the analyses being performed with 88 
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subjects. Table 1 shows how the subjects were distributed across the conditions and the 
schools. 

 
Table 1. Distribution of subjects over conditions 
  Condition  

Class School R-Step (m/f) R-Once (m/f) Total (m/f) 

1 1 9 (9/0) 8  (8/0) 17 (17/0) 

2 2 6 (5/1) 9  (8/1) 15 (13/2) 

3 1 11 (11/0) 12  (12/0) 23 (23/0) 

4 2 14 13/1) 10  (10/0) 24 (23/1) 

5 2 13 (13/0) 13  (13/0) 26 (26/0) 

6 2 7 (7/0) 8  (8/0) 15 (15/0) 

Total  60 (58/2) 60  (59/1) 120 (117/3) 

m = male, f = female 
  

2.2 Materials 

2.2.1 Learning environment 
Subjects worked with the Moments learning environment that was built in the 

SimQuest authoring environment (de Jong, van Joolingen, Veermans, & van der Meij, 
2005; van Joolingen & de Jong, 2003). Subjects studied the physics topic moments in 
the context of mechanical engineering. The topic is important for these students, since 
it forms the basis for static mechanics. The learning environment is based on guided 
discovery learning (de Jong & van Joolingen, 1998). The learner has to engage in 
discovery activities in order to learn about the properties of the simulation model and 
is guided in the discovery process by ‘cognitive tools’ such as model progression, 
assignments and explanations. Learners explore the simulation model by manipulating 
values of the input variables and observing the behaviour of output variables. By 
understanding the relations between the variables, it is expected that learners acquire a 
deep understanding of the domain and are able to transfer their knowledge to similar 
‘problems’ in other situations. 

The learning environment consists of an introduction and 16 assignments. The 
introduction gives an overview to ‘moments’ by giving everyday examples in which 
moments play a role. After this introduction, learners explore specific aspects of the 
domain by choosing an assignment from the menu. When opening an assignment, a 
corresponding simulation interface opens. Each assignment starts with a short 
description of an aspect of the domain, asks the learner to explore this aspect and asks 
the learner to answer a question about it.  

Supported by assignments (right screen in Figure 1), the learner can perform 
experiments in the simulation interface (left screen in Figure 1). The learner can 
manipulate the force and length input variables and can observe the moment output 
variable. The assignments stimulate learners to explore both the relation between the 
variables in the simulation model and the relation between the representations given. 
The types of representations used are: (1) a concrete representation (animation of an 
open-end spanner); (2) a diagrammatic representation (an abstract representation of the 
variables playing a role in the concrete situation); (3) a numerical representation 
(showing the values of the variables involved); (4) a dynamically changing equation; 
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and (5) a dynamically changing table (showing one row that is dynamically updated 
when variables are manipulated by the learner). Table 2 gives an overview of the 
instructional support with corresponding representations. Only the variables in 
representation 2 are introduced explicitly in assignments 2, 3, 4, 5, 7 and 8. The 
assignments are the same for both experimental conditions. 

 

 
Figure 1. Assignment with simulation interface showing all representation types 

Representations 1, 2 and 3 are representations usually found in textbooks. These 
representations are the basic types presented to learners in this domain. They support 
learners to get insight in the domain from different perspectives. We were able to 
integrate these representations because of their formats. The concrete and 
diagrammatic representations could easily be integrated because they share the same 
spatial properties. The numerical representations could be placed near the objects of 
the other two representations. The concrete representation (1) provides the learner with 
a context of the simulated task. This representation links the learning material to a real-
life experience. The choice for an open-end spanner in this learning environment was 
made because most of the learners in the target group have experiences in using this 
tool. The diagrammatic representation (2) helps learners to go beyond the concrete 
situation to a more abstract understanding of the relation between the variables 
involved. By providing this type of representation, it is expected that learners can use 
their acquired understanding in new situations. Both the concrete and diagrammatic 
representations present the domain in a qualitative way. The numerical representation 
(3) gives a quantitative view of the variables involved. The contribution of this 
representation is showing the values of the variables to support the numerical relations 
between the variables. The dynamically changing equation (4) represents the domain 
as a formula with dynamically changing numerical values. It shows the actual values 
of the variables together with their relations in a direct way. The dynamically changing 
table (5) also supports the understanding of numerical relations. It contains one row 
representing the actual values of all variables involved. The dynamically changing 
equation and table could not be integrated with representations 1 to 3 because their 
forms are too divergent. We chose to dynamically link all the representations. 

Open 
answer 

Assignment 

1,2,3 

4 

5 
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Table 2. Instructional support with corresponding representations 
 Representations  

 Instructional support (text)  R-Step condition R-Once condition 

00. Introduction Text and pictures Text and pictures 

01. Explanation what is moment 1 1, 2, 3, 4, 5 

02. Fixed clamp 1, 2 (clamp) ,, 

03. Moment caused by place hand 1, 2 (clamp and M) ,, 

04. Introduction arm 1, 2 (clamp, M and a) ,, 

05. Introduction force 1, 2 (clamp, M, a and F) ,, 

06. Orientation moment by force ,, ,, 

07. Introduction angle (90°)� 1, 2 (clamp, M, a, F and �) ,, 

08. Introduction distance 1, 2 ,, 

09. Magnitude moment 1, 2, 3 ,, 

10. Variables that play a role 1, 2, 3, 4 ,, 

11. Relation force and moment 1, 2, 3, 4, 5 ,, 

12. Introduction Experiment table ,, ,, 

13. Double the force ,, ,, 

14. Relation a and M ,, ,, 

15. Combination M, a and F ,, ,, 

16. Influence angle on moment ,, ,, 

 
Representations: 
1. concrete representation (animation of open-end spanner) 
2. diagrammatic representation (an abstract representation of the variables playing a role in 

the concrete situation) 
3. numerical representation (showing the values of the variables involved) 
4. dynamically changing equation 
5. dynamically changing table (showing one row that is dynamically updated when variables 

are manipulated by the learner) 
 
 

 
Figure 2. Experiment table 

In addition to the table, an experiment table is introduced in assignment 12 (see 
Figure 2). This table has the same format as representation number 5 (the dynamically 
changing table), except that learners can save, compare, structure, replay and delete 
their experiments. Experiments are saved by clicking a save button; this adds a row to 
the table showing the variables values in a static fashion. Learners can replay an 
experiment by selecting a table row and clicking a start button. All representations then 
represent the values of the table row. 
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Learners can manipulate the input variables by using the provided sliders. If a 
learner manipulates a slider, the corresponding changes are shown in the 
representations in real time. So, if a learner moves the force-slider, the element 
representing force is updated continuously and immediately, as is the change in 
moment. Learners can compare situations by moving the slider back and forth between 
different states of the simulation. They can also compare situations when they have 
access to the experiment table (see Figure 2). 

In the experimental condition, the representations are introduced one by one; 
starting with the concrete representation, followed by the diagrammatic, then the 
numerical and ending with the table (Figure 3 shows the first step; Figure 1 shows the 
final step). 

 

 
Figure 3. First representation progression step (experimental condition) 

2.2.2 Tests and questionnaires 
Subjects’ prior domain knowledge was assessed using an online pre-test. This 

was administered directly before working with the learning environment. An online 
post-test was administered directly after working with the learning environment. The 
pre-test consisted of 20 items, both multiple-choice and open answer items; 10 items 
testing domain knowledge and 10 items testing understanding of the domain. The post-
test consisted of 40 items, both multiple-choice and open answer items; 10 items 
testing pure domain knowledge, 10 items testing understanding of the domain, 10 
testing the ability to relate representations and 10 items testing the ability to translate 
between representations. The domain and understanding items corresponded with the 
post-test items. The post-test items differed slightly from the pre-test by differing the 
item and alternative answer orders. Since subjects did not know which items had been 
changed, they could not rely on a memory strategy.  

For each pre-test and post-test item, a subject received a score of 1 if the answer 
was correct or a score of 0 if the answer was incorrect. The maximum scores for the 
pre-test and post-test were 20 and 40 respectively. Figure 4 shows examples of one test 
item from each category. 
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Figure 4. Example of a (1) domain, (2) understanding, (3) relate and (4) translate item 
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The domain items tested whether the subjects were able to reproduce the content 
they were explicitly asked to explore in the learning environment. The understanding 
items tested whether the subjects had insight in the domain. To answer these items 
correctly, the subjects needed to apply their acquired knowledge in new situations. 
These were new contexts and relations between variables that were not directly asked 
for in the learning environment, but that could be derived from the domain knowledge. 
The relate items tested whether students were able to relate different representations. 
These items asked students to relate similar variables of representations with different 
representational codes. To be able to answer translate items correctly, the subjects had 
to make a mental translation from manipulations on one representation to the effects in 
another representation, having a different representational code. 

An electronic questionnaire based on Swaak’s S.O.S. scale (Swaak, 1998) was 
used to assess the subjects’ opinions on the complexity of the learning environment 
and the domain. The questionnaire asked subjects to score the topic as easy, average, 
or difficult (Q1) and whether they found working with the simulation easy, average, or 
difficult (Q2). The questionnaire was given three times to subjects while they worked 
with the learning environment; after assignments 6, 11 and 16. Subjects had to 
complete the questionnaire before they could continue. The possible answers: easy, 
average, or difficult. 

2.3 Procedure 

The experiments were held at the participating schools and consisted of three 
experimental sessions: pre-test, working with the learning environment and post-test. 
Subjects were randomly assigned to one of the two conditions using their seating 
placement. 

Before the pre-test participants were informed about the experiment and were 
told the test measured their prior knowledge on force, arm and moment. If necessary, a 
brief description was given. Participants were asked to fill in all test items, even if they 
were unsure about the right answer. Subjects had a maximum of thirty minutes to fill 
in the pre-test. 

The learning environment session took place proximally 45 minutes after the 
start of the pre-test session, so that all subjects had at least a 10-minute break between 
the sessions. Subjects could work in the learning environment in their own pace, but 
not longer than an hour. They worked on their own and could question the teacher or 
experiment leader on operating the learning environment. Subjects were asked to do all 
16 assignments. When ready they could ask to do the post-test. 

The post-test took place directly after the learning environment session. The 
participants could work a maximum of forty-five minutes on this test. The participants 
were not allowed to use the learning environment during the test and were asked to fill 
in all test items, even if they were unsure about the right answer. 

3 Results 

3.1 Pre-test and post-test 

3.1.1 Subjects with prior knowledge in the domain 
The overall mean score on the pre-test was 12.16 out of 20 test items (SD = 

2.99). These data indicate the subjects had moderate prior knowledge in the domain. 
The overall mean score on the post-test domain plus understanding items was 13.31 
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out of 20 test items (SD = 2.81). Table 3 shows the means and standard deviations of 
the scores on the item categories in the pre-test and post-test. 

 
Table 3. Means and standard deviations of pre-test and post-test scores 

 Pre-test Post-test 

 Mean (SD) % Mean (SD) % 

Domain items (max. 10) 6.97 (1.51) 70 7.50 (1.44) 75 

Understanding items (max. 10) 5.19 (1.94) 52 5.81 (2.07) 58 

Total (max. 20) 12.16 (2.99) 61 13.31 (2.81) 67 

Relate items (max. 10)    8.63 (1.21) 86 

Translate items (max. 10)    3.78 (1.98) 38 
n = 32 

  
A repeated measures ANOVA showed the overall combined domain and 

understanding post-test score of the 32 subjects was significantly better than the 
overall pre-test scores (F(1,31) = 9.07, p < .01). Repeated measures ANOVAs for each 
item category showed a trend for pre-test to post-test scores on domain items (F(1,31) 
= 3.89, p = 0.06). Post-test scores on understanding items were significantly better than 
pre-test scores on these item types (F(1,31) = 7.52, p < .05). Table 4 shows the means 
and standard deviations of the pre-test and post-test scores for the four item categories 
for each condition.  

 
Table 4. Means (standard deviations) of pre-test and post-test scores per condition 

 R-Step R-Once 

Pre-test Mean (SD) Mean (SD) 

Domain items (max. 10) 7.33 (1.63) 6.65 (1.37) 

Understanding items (max. 10) 5.53 (1.51) 4.88 (2.26) 

Total (max. 20) 12.87 (2.70) 11.53 (3.17) 

Post-test     

Domain items (max. 10) 7.53 (1.30) 7.47 (1.59) 

Understanding items (max. 10) 5.73 (1.53) 5.88 (2.50) 

Relate items (max. 10) 8.60 (1.12) 8.65 (1.32) 

Translate items (max. 10) 3.73 (1.87) 3.82 (2.13) 

Total (max. 40) 25.60 (4.42) 25.82 (5.88) 
n = 32 

  
One-way ANOVAs showed no significant differences between the experimental 

conditions on pre-test domain scores and understanding scores (F(1,30) = 1.68, p = 
.21; F(1,30) = .90, p = .35). This means that subjects in the experimental conditions 
did not differ in prior knowledge. 

One-way ANOVAs showed no significant differences between the experimental 
conditions on post-test domain scores, understanding scores, relate scores and translate 
scores (F(1,30) =.02, p = .90; F(1,30) = .04, p = .84; F(1,30) = .01, p = .92; F(1,30) = 
.02, p = .90). 
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3.1.2 Subjects without prior knowledge in the domain 
The overall mean score on the pre-test was 9.65 out of 20 test items (SD = 2.88). 

These data indicate the subjects had little prior knowledge in the domain. The overall 
mean score on the post-test domain plus understanding items was 11.64 out of 20 test 
items (SD = 3.10). Table 5 shows the means and standard deviations of the scores on 
the item categories in the pre-test and post-test. 

 
Table 5. Means and standard deviations of pre-test and post-test scores 

 Pre-test Post-test 

 Mean (SD) % Mean (SD) % 

Domain items (max. 10) 5.70 (1.62) 57 6.99 (1.68) 70 

Understanding items (max. 10) 3.96 (1.78) 40 4.65 (1.91) 47 

Total (max. 20) 9.65 (2.88) 48 11.64 (3.10) 58 

Relate items (max. 10)    7.82 (1.50) 78 

Translate items (max. 10)    2.95 (1.39) 30 
n = 88 

  
A repeated measures ANOVA showed the overall combined domain and 

understanding post-test score of the 88 subjects was significantly better than the 
overall pre-test scores (F(1,87) = 60.68, p < .01). Repeated measures ANOVAs for 
each item category showed that the post-test scores on domain and understanding 
items were significantly better than the pre-test scores on these item types (F(1,87) = 
67.51, p < .01 and F(1,87) = 15.54, p < .01). Table 6 shows the means and standard 
deviations of the pre-test and post-test scores for the four item categories for each 
condition.  

 
Table 6. Means (standard deviations) of pre-test and post-test scores per condition 

 R-Step R-Once 

Pre-test Mean (SD) Mean (SD) 

Domain items (max. 10) 5.93 (1.76) 5.44 (1.44) 

Understanding items (max. 10) 3.91 (1.73) 4.00 (1.85) 

Total (max. 20) 9.84 (2.97) 9.44 (2.80) 

Post-test     

Domain items (max. 10) 7.09 (1.62) 6.88 (1.75) 

Understanding items (max. 10) 4.49 (1.73) 4.81 (2.09) 

Relate items (max. 10) 7.67 (1.49) 7.98 (1.50) 

Translate items (max. 10) 2.91 (1.47) 3.00 (1.31) 

Total (max. 40) 22.16 (4.01) 22.67 (5.29) 
n = 88 

  
One-way ANOVAs showed no significant differences between the experimental 

conditions on pre-test domain scores and understanding scores (F(1,86) = 2.05, p = 
.16; F(1,86) = .05, p = .82). This means that subjects in the experimental conditions 
did not differ in prior knowledge. 
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One-way ANOVAs showed no significant differences between the experimental 
conditions on post-test domain scores, understanding scores, relate scores and translate 
scores (F(1,86) = .33, p = .57; F(1,86) = .64, p = .43; F(1,86) = .94, p = .33; F(1,86) = 
.09, p = .77). 

3.1.3 Subjects with and without prior knowledge in the domain taken together 
The overall mean score on the pre-test was 10.32 out of 20 test items (SD = 

3.10). These data indicate the subjects had some prior knowledge in the domain. The 
overall mean score on the post-test domain plus understanding items was 12.08 out of 
20 test items (SD = 3.10). Table 7 shows the means and standard deviations of the 
scores on the item categories in the pre-test and post-test. 

 
Table 7. Means and standard deviations of pre-test and post-test scores 

 Pre-test Post-test 

 Mean (SD) % Mean (SD) % 

Domain items (max. 10) 6.03 (1.69) 60 7.13 (1.63) 71 

Understanding items (max. 10) 4.28 (1.90) 43 4.96 (2.01) 50 

Total (max. 20) 10.32 (3.10) 52 12.08 (3.10) 60 

Relate items (max. 10)    8.03 (1.47) 80 

Translate items (max. 10)    3.18 (1.60) 32 
n = 120 

  
A repeated measures ANOVA showed the overall combined domain and 

understanding post-test score of the 120 subjects was significantly better than the 
overall pre-test scores (F(1,119) = 67.38 p < .01). Repeated measures ANOVAs for 
each item category showed the post-test scores on domain and understanding items 
were significantly better than the pre-test scores on these item types (F(1,119) = 61.66, 
p < .01 and F(1,119) = 22.57, p < .01). Table 8 shows the means and standard 
deviations of the pre-test and post-test scores for the four item categories for each 
condition.  

 
Table 8. Means (standard deviations) of pre-test and post-test scores per condition 

 R-Step R-Once 

Pre-test Mean SD Mean SD 

Domain items (max. 10) 6.28 (1.82) 5.78 (1.51) 

Understanding items (max. 10) 4.32 (1.81) 4.25 (2.00) 

Total (max. 20) 10.60 (3.17) 10.03 (3.03) 

Post-test     

Domain items (max. 10) 7.20 (1.55) 7.05 (1.71) 

Understanding items (max. 10) 4.80 (1.75) 5.12 (2.24) 

Relate items (max. 10) 7.90 (1.49) 8.17 (1.48) 

Translate items (max. 10) 3.12 (1.61) 3.23 (1.61) 

Total (max. 40) 23.02 (4.34) 23.57 (5.60) 
n = 120 
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One-way ANOVAs showed no significant differences between the experimental 
conditions on pre-test domain scores and understanding scores (F(1,118) = 2.68, p = 
.10; F(1,118) = .04, p = .85). This means that subjects in the experimental conditions 
did not differ in prior knowledge. 

One-way ANOVAs showed no significant differences between the experimental 
conditions on post-test domain scores, understanding scores, relate scores and translate 
scores (F(1,118) =.25, p = .62; F(1,118) = .74, p = .39; F(1,118) = .99, p = .32; 
F(1,118) = .16, p = .69). 

3.1.4 Comparison of subjects with and without prior knowledge 
A one-way ANOVA showed that subjects with prior knowledge scored 

significantly higher on the pre-test than subjects without prior knowledge (F(1,118) = 
17.49, p < .01). The same effect was found for the post-test (F(1,118) = 11.17, p < 
.01). 

3.2 Experienced domain complexity 

The experienced domain complexity was measured by the questionnaire 
question: “I find the topic at this moment:  easy, average, or difficult.” The question 
appeared three times during working with the learning environment. One-way 
ANOVAs for all three appearances showed no significant differences between the 
experimental conditions on experienced domain complexity for neither subjects with 
prior knowledge and subjects without prior knowledge. 

3.3 Experienced learning environment complexity 

 The experienced learning environment complexity was measured by the 
questionnaire question: “I find working with the simulation at this moment:  easy, 
average, or difficult”. The question appeared three times during working with the 
learning environment. One-way ANOVAs for all three appearances showed no 
significant differences between the experimental conditions on experienced learning 
environment complexity for neither subjects with prior knowledge and subjects 
without prior knowledge. 

4 Discussion 

The aim of this study was to determine if sequencing dynamic representations 
has an effect on learning outcomes. This was examined in a simulation-based learning 
environment on the physics topic of moments. 

Overall, we found that subjects learned from working with the learning 
environment; post-test scores on the domain and understanding items were 
significantly better than pre-test scores. In contrast with our expectations, no 
differences where found between experimental conditions. So, subjects learned equally 
well regardless of the way the representations were presented. Also, subjects’ 
complexity experience of both the topic and learning environment did not differ 
between the experimental conditions.  

This leaves us with the question: Why did sequencing representations not 
support learners in relating and translating between representations? Do we have to 
adapt our theory? In search of an answer to these questions we analysed the log files to 
get insight in the way learners worked through the learning environments. The data 
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suggest that an intervening variable played an important role: the instructional support 
consisting of assignments and explanations. The instructional support had a great 
impact on how learners worked with the learning environment. It was the same for 
both conditions, but was organised according to the steps in the experimental condition 
where we sequenced the representations. The assignments and explanations directed 
the subjects’ attention to the newly introduced representations and variables. It looks 
like the instructions supported the subjects in the progression of the learning material; 
sequencing the material from simple to complex. Thus, it may have affected the 
subjects processing of the representations.  

Although we tried to encourage the subjects to explore the simulation and reflect 
on their actions by asking them to prove their answers by experiments done and to 
provide an explanation for their given answers, the log files showed that learners did 
not explore the simulation for other features than explicitly indicated in the 
assignments and their reflections were very brief. In short, the instructions guided the 
subjects through the learning environment with little else being attended to. As a 
result, the subject did not focus on relating representations and translating between 
them. Therefore, the expected support from representational progression was not found 
in this study. 

Despite of our attempt to engage the subjects in relating representations and 
translating between them, they do not seem to do so if they are not explicitly asked to. 
We believe the intervening effect of instructional support in the present study can help 
us to improve the effects of providing multiple representations in the future. In a 
follow-up study we are going to use the current results to adapt the instruction. Instead 
of focusing on domain knowledge in the instruction, we are going to try to encourage 
learners to relate and translate between representations by explicitly asking them to do 
that. We believe that sequencing the representations are of additional support here. 
They avoid overloading learners by directing their attention only to the representations 
they are asked to relate and translate between. Step-by-step learners are guided to 
relate more representations and translate between them.   
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