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Abstract

In the present article, we argue that the conceptual change approach to learning can apply
in the case of mathematics, taking into consideration the particular nature of mathematical
knowledge and the neurobiological bases of mathematical cognition. In the empirical study
that is reported in this article, we investigated ninth graders’ understanding of algebraic and
structural properties of rational numbers, from a conceptual change perspective. We make
the point that understanding rational numbers is not indiscriminately difficult. We show that
prior knowledge about natural numbers supports students dealing with algebraic properties
of rational numbers, while the idea of discreteness is a fundamental presupposition, which
constrains students’ understanding of density.
# 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The conceptual change approach to learning has its roots both in the science

education research tradition and the cognitive-developmental research tradition

(Vosniadou, 1999). Both traditions took into consideration Kuhn’s revolutionary

account of scientific change (Kuhn, 1970). In the science education research tra-

dition, researchers drew an analogy between the Piagetian ideas about accommo-

dation and assimilation and the Kuhnian ideas about theory change in the history
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of science. The key construct ‘‘scientific revolution’’ served as a source of hypoth-
eses about how concepts change in the process of learning (Posner, Strike, Hewson,
& Gertzog, 1982). Within the cognitive-developmental research tradition, Piaget’s
thesis that cognitive development primarily involves changes in general logical
capabilities was challenged and it was assumed that human cognition builds on a
set of domain-specific systems of knowledge (Carey & Spelke, 1996). Starting with
Carey (1985), who extrapolated insights from Kuhn’s ideas, developmental psy-
chologists described cognitive development in terms of the reorganization of initial,
domain-specific knowledge structures.
A considerable number of empirical studies have been conducted within the con-

ceptual change theoretical framework in the case of science learning (Mason, 2001;
Vosniadou, 1994a). But the conceptual change approach is not itself ‘‘domain-
specific’’: it has been used to describe and explain aspects of learning in domains
other than science, such as history (Limon, 2002). In the present study, we investi-
gate students’ understanding of certain properties of rational and real numbers. We
will adopt the conceptual change theoretical framework developed by Vosniadou
(1994b, 2002). But before presenting the design and results of that study, we will
first argue that the conceptual change approach is relevant to mathematics learning.

1.1. Are there scientific-like revolutions in mathematics?

As we have already mentioned, in science education research, patterns of change
in science history were related to patterns of change in science learning. However,
in the case of mathematics there could be an argument that the particular nature of
mathematical knowledge and its development is such that learning mathematics
does not require radical change of concepts, but it is rather a matter of enriching
prior knowledge.
Mathematics has traditionally been regarded as an exceptional domain of human

knowledge, with particular characteristics, which differentiate it from any other
discipline, even from its nearest neighbors, the natural sciences. Among others,
there is one claim about mathematics that is particularly relevant to our discussion,
namely the claim that mathematics is cumulative (Crowe, 1992; Kitcher, 1992).
This view of mathematics is partly grounded on the belief that once a mathemat-
ical statement is proven, it can be safely and permanently added to the body of
knowledge of mathematics. But mathematics can also be considered cumulative in
the sense that a mathematical theory, once established, is never deposed by a latter
theory (Crowe, 1975). In fact, this has been the main argument against the possi-
bility of science-like revolutions in mathematics. The coexistence of Euclidean and
non-Euclidean geometries is usually presented as an example: non-Euclidean geo-
metries are a major breakthrough in the history of mathematics, yet Euclidean
geometry is still valid after the change and there is no phenomenon of incommen-
surability about it.
It appears that Kuhn himself explicitly exempted mathematics from his analysis,

as he was persuaded that there are no revolutions in mathematics, at least not in
the same sense as in natural sciences. Although according to some analyses,
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mathematics and science bare more resemblances than traditionally believed
(Kitcher, 1992), let us assume for the purpose of our discussion, that changes in
mathematics are indeed not analyzable in the terms used for the natural sciences.
And let us also accept that deciding whether a change in mathematics is ‘‘revol-
utionary’’ or not is a matter of definition (Corry, 1993; Crowe, 1992). The question
whether revolutions, in the Kuhnian sense, occur in mathematics is still important
to the extent that it provoked a fruitful discussion, which accelerated a change in
the way the history of mathematics is viewed. New perspectives on the history of
mathematics have questioned the claim that ‘‘the structure of mathematics accu-
rately reflects its history’’ (Crowe, 1992) and have revealed that mathematical con-
cepts undergo changes that cannot be described in terms of accumulation. For
example, in the case of the concept of number, the shift from the Pythagorean
concept of number, through the theory of proportions of Eudoxus to the concept
of rational and Dedekinds’ real numbers entails more than just expanding the
initial concept. It entails changes in the meaning of the term ‘‘number’’. For
example, the conceptualization of ratios of integers as numbers, rather than opera-
tions, can be accounted for as an ontological shift of ratios from the category of
processes to the category of mathematical objects (Sfard, 1991). The shift from the
irrational magnitudes to irrational numbers can also serve as an example (Dauben,
1984).
To summarize, we argued that for the purpose of deciding whether the concep-

tual change approach can apply to mathematics learning, one does not need to give
an account for the change of mathematical theories, but for the development of
mathematical concepts. From this perspective, it suffices to argue that there is more
to the development of mathematical concepts than mere addition.

1.2. Is there a domain-specific knowledge system pertaining to mathematical
cognition?

A basic assumption of the domain-specific approach to cognitive development is
that human cognition builds on a set of domain-specific systems of knowledge,
which are probably neurobiologically based and have developed through evolution
(Carey & Spelke, 1996).
There is increasing evidence from research with animals, human infants and indi-

viduals from different cultures (Butterworth, 1999; Dehaene, 1998; Gelman, 2000;
Lipton & Spelke, 2003) that the domain of number is sustained by a specific,
innately determined system. The discrete nature of numbers has been proposed as
one of the core principles of this system (Carey & Spelke, 1994; Galistel & Gelman,
1992).
The implications of this assumption are that some aspects of learning pertaining

to the number concept are privileged, and thus easy to achieve, whereas others are
not (Gelman, 2000; Stern, 2003). The first are compatible with the initial number
concept, whereas the latter require reorganization of the existing knowledge struc-
tures, as predicted by the conceptual change approach. There is a considerable
amount of empirical evidence to support this assumption: early understandings of
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natural numbers and their properties are privileged and support children’s under-
standing of notions such as potential infinity (Hartnett & Gelman, 1998). On the
contrary, learning about rational numbers, their representations and their proper-
ties is considerably difficult and is bugged with numerous misconceptions (Carpen-
ter, Fennema, & Romberg, 1993; Gelman, 2000).

1.3. What is the role of prior knowledge in mathematics learning? The case
of the number concept

In mathematics education research, there has been much evidence to show that
prior knowledge about natural numbers stands in the way of understanding
rational numbers. Students make use of their knowledge of whole numbers, to
interpret new information about rational numbers (Moskal & Magone, 2000;
Resnick, Nesher, Leonard, Magone, Omanson, & Peled, 1989). This gives rise to
numerous misconceptions, pertaining both to conceptual and operational aspects
of numbers. For example, properties of natural numbers such as ‘‘the more digits a
number has the bigger it is’’ are used in the case of decimals. Misconceptions about
fractions are connected to principles that apply only in the case of natural numbers
(Stafylidou & Vosniadou, this issue). In the context of mathematical operations,
there are well known misconceptions, such as that ‘‘multiplication always makes
bigger’’, which reflects the effect of prior knowledge about multiplication with
natural numbers (Fischbein, Deri, Nello, & Marino, 1985). Such results are com-
patible with the conceptual change theoretical framework, which predict difficulties
in learning when the new knowledge to be acquired comes in conflict with what is
already known (Vosniadou, 1994a).
2. The present study

The main purpose of the present study is to investigate the development of stu-
dents’ ideas about the structure of the set of rational numbers. The set of rational
numbers is characterized by a property, namely density, which is radically different
than that of the set of natural numbers, namely discreteness. More specifically,
between any two different rational numbers there are infinitely many rational num-
bers, whereas between two successive natural numbers there is no other natural
number. To develop the concept of density, one needs to realize that the concept of
rational number unifies the concepts of decimal, fractional and whole numbers.
This requires understanding the different representations of rational numbers and
the way they are related to each other, as well as the interrelations between the
various subsets of the set of rational numbers. This kind of understanding is diffi-
cult to achieve (Carpenter et al., 1993; Gelman, 2000; Moskal & Magone, 2000).
Moreover, the concept of density is closely related to the concept of infinity. The
concept of infinity has various aspects, among which actual infinity is the most dif-
ficult to grasp (Fischbein, 1987; Lakoff & Nunez, 2000; Tall, 2001; Tirosh, 1991).
As already mentioned, early understandings of the principles underlying the struc-
ture of natural numbers support understanding of certain aspects of potential infin-
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ity. Children can infer that there are infinitely many natural numbers, based on the

fact that for any natural number, there is always a next one. In some cases, the

same thinking may support dealing with the concept of density. For example,

prompting a student to find the arithmetic mean m0 of two rational numbers a, b

and repeat the procedure for a, m0 and so on, may lead the student to infer that

there are infinitely many numbers between a and b. This is a way of approaching

the notion of actual infinity in a potential manner. It is our assumption, investi-

gated by an ongoing study, that this kind of response does not necessarily imply

that the student has achieved understanding of density. In a context that relates

density to actual infinity, the concept of density is quite difficult to deal with.

Moreover, as we have already argued, the idea of discreteness of numbers is deeply

rooted, both in the initial knowledge system pertaining to mathematical cognition

and in later conceptual structures pertaining to the number concept. Empirical

research on the concept of rational and real numbers and the concept of infinity

(Hannula, Maijala, Pehkonen & Soro, 2001; Malara, 2001; Merenluoto & Lehti-

nen, 2002, this issue) shows that misconceptions associated with the idea of dis-

creteness are robust.
We claim that the development of the concept of density is a case of conceptual

change in mathematics learning. According to the conceptual change theoretical

framework developed by Vosniadou (1994b, 2002),

. we assume that the idea of discreteness is a fundamental presupposition which
constrains students’ understanding of the structure of the set of rational num-
bers. Therefore, we expect students to generate errors that reflect the presuppo-
sition of discreteness.

. we assume that the understanding of density is a slow and gradual process, and
not an ‘‘all or nothing’’ situation. Therefore, we expect to diagnose intermediate
levels of understanding, reflecting students’ efforts to assimilate new information
about rational numbers in their pre-existing structures of knowledge about natu-
ral numbers. We expect that students who belong to intermediate levels of
understanding have misconceptions that can be explained as synthetic models
(Vosniadou, 1994b).

To make the point that understanding about rational numbers is not indiscrimi-

nately difficult we also investigate students’ understanding about the algebraic

properties of rational numbers (‘‘every number 6¼ 0 has an inverse and an opposite
number’’). Contrary to the case of the structure of rational numbers, which is rad-

ically different from that of natural numbers, natural and other rational numbers

share the same algebraic properties. Consequently, in this case, knowledge about

natural numbers supports new understandings. On this basis, we assume that stu-

dents perform adequately in new problems pertaining to the algebraic properties

mentioned above.
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3. Method

3.1. Participants

The participants of the study were 16 ninth graders (approximately 15 years of

age), from the same class in a middle class school in the Athens area. Participation

in the study was voluntary and, according to their teacher, participants represented

various levels of performance in mathematics.
By the time we interviewed them, our participants had finished a review of every-

thing they were supposed to know about real numbers, including operations, turn-

ing a fraction into a decimal and vice versa, comparing and ordering numbers.

They had also used the number line extensively, as a way to represent real num-

bers. Learning about density is not an explicit goal of the procedure-oriented

Greek curriculum. Still, in their books there appear many tasks that relate to the

concept of density. For example, seventh graders are explicitly taught how to find a

fraction between two pseudo-successive fractions like 3=5 and 4=5. Eighth graders

are explicitly taught how to approximate
ffiffiffi

2
p
with two rational numbers. Our ninth

grade participants, in the first chapter of their mathematics book, had to solve

exercises like the following: ‘‘Given that 3:14 < pi < 3:15, between which numbers

is the area of the circle with radius r ¼ 10 cm?’’. Their mathematics teacher, who
was teaching these students since grade 7, informed us that the fact that there are

infinitely many numbers in an interval had been mentioned in the classroom.

Although he predicted that the tasks might be difficult for the students, he

explained this difficulty by saying that this was eighth grade material and that it

was possible that students would not remember it.

3.2. Procedure

All students were individually interviewed. The interview took place at their

school, during regular school hours. Each interview lasted about one hour and

covered many aspects of the number concept. In this article, we will only refer to

the results pertaining to the properties of the set of rational numbers described

above. All interviews were recorded and transcribed for the purposes of the present

study. During the interview, each student was presented with a paper-and-pencil

questionnaire that will be described in the next session. Students were asked to

think aloud and to comment on their own answers.

3.3. Materials

The questionnaire, which is presented in Table 1, was empirically tested in a

pilot study, for which a larger set of questions was originally developed. The

present questions were selected from the original pool and were elaborated on the

basis of the pilot study. The questionnaire includes the questions A1, A2 pertaining

to the algebraic properties of real number; Da1, Da2, Da3, Db1, Db2, pertaining to

density; P1, P2, P3, P4 were asked for the purpose of clarification.
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At the beginning of the interview, it was made explicit to students that, unless

stated otherwise, the term ‘‘number’’ refers to elements of the set of real numbers.1

We used the questions P1, P2 to avoid misunderstandings because of the wrong use

of terms. Unless mentioned by the student herself, we made clear that ‘‘every num-

ber you know belongs to the set of real numbers’’. By the end of the discussion, it

was made clear that any number, regardless of the way it is represented, is an

element of the set of real numbers.
We used the questions P3, P4 to make sure that the students knew what the

terms ‘‘opposite’’ and ‘‘inverse’’ number mean. All students were familiar with

these terms. However, in some cases, students mixed up the terms, saying for

example that the inverse number of 2 is �2. In those cases, we reminded the stu-
dent of the correct use of terms.
During the interview, all participants were presented with questions Da1, Da2,

Da3. Students who answered that there are infinitely many numbers between the
Table 1

Questions used during the interview
1 The term ‘

broader set of
Preliminary questions
P1
 Suppose that a friend of yours does not know what the set of real numbers is. What

would you say to make him/her understand?
P2
 Which of the following numbers are real numbers? Choose with a X.

5 3:21
ffiffiffi

2
p

� 1=2 0:9999999 . . . 1=ð
ffiffiffi

2
p

þ 1Þ

P3
 Which is the opposite of 2?
P4
 Which is the inverse of 2?
Questions about algebraic properties
A1
 Is there an opposite number for
ffiffiffi

3
p
?

(i) Yes, there is and it is......

(ii) No, there is not, because......
A2
 Is there an inverse number for 0.02506?

(i) Yes, there is and it is......

(ii) No, there is not, because......
Questions about density
Da1
 Between the number 0.001 and the number 0.01

(i) There is only one number and that number is......

(ii) There is no other number(iii) (Else)......
Da2
 Between the number 3=8 and the number 5=8

(i) There is only one number and that number is......

(ii) There is no other number(iii) (Else)......
Da3
 How many numbers are there between 0.005 and 0.006?
Db1
 How many numbers are there between 5=8 and 8.5?
Db2
 How many numbers are there between 2=5 and 4=7?
‘real numbers’’ was deliberately used in all questions. Ninth graders always refer to the

real numbers. The term ‘‘set of rational numbers’’ would only confuse them.



X. Vamvakoussi, S. Vosniadou / Learning and Instruction 14 (2004) 453–467460
two given numbers in all three questions, answered in addition Db1 and Db2, in
which they had to specify how many numbers exist between a decimal and a frac-
tion and between two dissimilar fractions. The interviewer explicitly informed the
students that the numbers involved in each case are not equal. The purpose of Db1
and Db2 was to test whether a student has achieved what we consider in this case
to be deep understanding of the structure of the set of rational numbers, that is to
be able to answer that between any two different rational numbers, no matter of
the way they are represented, there are infinitely many numbers. If this is the case,
we expect the student to be able to answer Db1 and Db2 without turning the frac-
tion into a decimal (or vice versa), or make the two fractions similar.
4. Results

Students’ responses to questions A1, A2 and Da1, Da2, Da3, along with the corre-
sponding frequencies are presented in Table 2.

4.1. Algebraic properties

As far as questions A1 and A2 are concerned, we did not evaluate whether our
participants were able to state correctly the specific opposite and inverse numbers.
Instead, we were interested to see whether they would be able to assign to the given
numbers the algebraic properties that they usually assign to natural numbers.
Although they were not familiar with the form of the numbers asked, all students
answered that the opposite and inverse numbers exist. In particular, they showed a
strong tendency to begin with the presupposition that these numbers do exist, and
then try to find them.
They typically used expressions such as the following:

‘‘I believe it exists. Now, I don’t know if I can write it down correctly.’’
‘‘The opposite? There must be an opposite. . . It is the square root of minus
three, I think!’’

We detected this tendency even more clearly in the case of A2. Students typically
started with the presupposition that the particular inverse number exists:

‘‘There is, I know there is. But, I personally don’t know which number it
is.’’‘‘There is an inverse. (. . .) First we have to turn this number into a
fraction. . . Yes. . . There is no doubt there is. . . I don’t remember how to turn a
decimal into a fraction, though.’’

Both students who answered that there is no inverse for 0.02506 followed a dif-
ferent line of reasoning: they tried to find the number, before deciding whether it
exists. This is reflected in their answers.

‘‘The inverse of this number. . . Now, can this thing I’m thinking of possibly
exist? (. . .) I don’t think there is. (. . .) It is rather strange to have a decimal
denominator (. . .) I haven’t seen such thing before, I guess it’s not allowed.’’
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Table 2

Categories of students’ responses to each question and corresponding frequenciesa
Questions about algebraic

properties

C

q

ategories of responses to the

uestions about algebraic

properties
Frequency of students’

responses
A1 T
he opposite exists
 16
T
he opposite does not exist
 0
A2 T
he inverse exists
 14
T
he inverse does not exist
 2
Questions about density (A) C
ategories of responses to the questions

about density (A)
Frequency of students’

responses
Da1 .
 . .there is no other number
 3
Between 0.001 and 0.01. . . .
 . .there is finite number of numbers

(more than 0)
10
.
 . .there are infinitely many

numbers
3

Da2 .
 . .there is only one number
 9
Between 3=8 and 5=8. . . .
 . .there are ‘‘infinitely many’’
numbers, all equal to 4=8
2

.
 . .there is finite number of numbers

(more than 1)
3

. . .there are infinitely many
numbers
2

Da3 .
 . .there is no other numbers
 9
Between 0.005 and 0.006. . . .
 . .there is finite number of numbers
 4
.
 . .there are infinitely many
numbers
3

Questions about density (B) C
ategories of responses to the

questions about density (B)
Db1
Between 5=6 and 8.5

B

I

efore I answer ‘‘infinitely many’’,

have to turn the decimal into a

fraction (or vice versa)
1

I
 can answer ‘‘infinitely many’’,

without turning the decimal into

a fraction (or vice versa)
0

Db2
Between 2=5 and 4=7

B

I

efore I answer ‘‘infinitely many’’,

have to make the fractions

similar
–

I
 can answer ‘‘infinitely many’’,

without making the fractions

similar
–

a For each one of the questions A1, A2, Da1, Da2, Da3, the total of student responses is 16. According

to our design, a student was asked question Db1, only in case he/she answered ‘‘infinitely many’’ to all

three questions Da1, Da2, Da3. Question Dd2 was asked, only in case the student was able to answer Db1,

without turning the decimal into a fraction, or vice versa. Only one of our participants made it to ques-

tion Db1. This student explicitly said that he had to turn 5=6 into a fraction, so question Db2 was never

asked.
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4.2. Structural properties

In a study of 16 participants, quantitative results are not of much importance.

Still, in this case, the results displayed on Table 2 give an adequate first impression

of students’ performance regarding questions Da1, Da2, Da3. The most frequent

answer given by our participants is that there is a finite number of numbers, either

0 or 6¼ 0, between the given numbers. We should point out that two of our parti-
cipants answered that there are infinitely many numbers between 3=8 and 5=8, but

when asked to describe some of these numbers, they came up with different repre-

sentations of 4=8 such as 4:0=8,
ffiffiffiffiffi

16
p

=8 and 32=64. We did not categorize this

answer as a typical ‘‘finite number of numbers’’ answer (see Table 2). We will refer

to these students as S1 and S2. None of our participants has showed what we con-

sider, in this case, to be deep understanding of the structure of the set of rational

numbers. Students’ responses were grouped in five different categories, varying

from a naive account of the structure of rational numbers to gradually more soph-

isticated accounts.
4.2.1. Naive discreteness
Students who consistently answered that between two pseudo-successive rational

numbers, there is no other number were placed in this category. Consistency in this

case reflects the fact that the students responded similarly, both in the case of deci-

mals and in the case of fractions. Students in this category also stated that there is

a finite number of numbers between the decimals with different number of decimal

digits. Data provided in the following example come from one student. The same

holds for each one of the examples presented in this section.

Example 1: ‘‘There is no other number [between 0.005 & 0.006], because after

0.005 comes 0.006’’‘‘[Between 3=8 and 5/8,] It’s just one, 4=8. And for that, I’m

sure’’.‘‘0.01 is the same as 0.010. So, starting from 0.001, there are the numbers

0.002, up to 0.009’’.
4.2.2. Advanced discreteness
Students who consistently answered that there is a finite number (6¼0) of num-

bers between two pseudo-successive rational numbers were placed in this category.

Consistency in this case also reflects the fact that the students responded similarly,

both in the case of decimals and in the case of fractions. Students in this category

also stated that there is a finite number of numbers between the decimals with dif-

ferent number of decimal digits. Student S1 was also placed in this category.

Example 2: ‘‘Between these two [0.005 & 0.006] you can find (he writes:) 0.0051,

0.0052,. . ., 0.0059’’.‘‘[Between 3=8 and 5=8] there are as many numbers, as it

takes to cover the space between 3 and 5: These are 3.1, 3.2, 3.3 and so on. . .’’
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4.2.3. Discreteness–density
Students who answered that between two rational numbers, there are infinitely

many numbers in some, but not in all cases, were placed in this category. Student

S2 was also placed in this category.

Example 3: ‘‘Between these two [0.001 & 0.01] there are the numbers which are
greater than 0.001 and smaller than 0.01. (. . .) So, there are 99 numbers in
between. . . Wait a minute! There are 9, because these two differ for one decimal
digit.’’‘‘[Between 3=8 and 5=8] There are infinitely many numbers’’

And he explained:

‘‘Between these two (0.005 & 0.006), you can find 9 numbers, when they are in
decimal form. But, if you turn them into fractions, you can find more: You can

find infinitely many numbers in between’’.

Example 4: ‘‘0.01 is the same as 0.010. So starting from 0.001, there are 0.002,

0.003, and so on, up to 0.009’’.
‘‘Between 0.005 and 0.006, there are many–many numbers: There can be 0.0051,
0.0052 and so on. But there can also be 0.00511 or 0.005831 or even more’’.

When we asked him to further elaborate his opinion, he explained:

‘‘These two (0.005 & 0.006) are both . . .how can I put it. . .there are in the same
group. So, you can add after 5 as many digits as you like before it reaches

0.006. But, between 0.001 and 0.01, you can only put these numbers (0.002,
0.003. . ., 0.009)’’.
4.2.4. Naive density
Only one student was placed in this category. This student answered that there

are infinitely many numbers, both in the case of decimals and in the case of frac-

tions. However, he was not able to answer immediately that there are infinitely
many numbers between a decimal and a fraction, although he was informed that

these numbers are not equal. Instead, he explicitly said that he needed to turn the

fraction into a decimal first. He did not give an adequate explanation about it. (‘‘I

don’t know. . . I guess it’s easier that way. . .’’)
4.2.5. Sophisticated density
This category corresponds to a rather sophisticated understanding of density. To

be placed in this category, a student must answer consistently that between any

two non-equal rational numbers there are infinitely many rational numbers,

regardless of the way they are represented. None of our participants belonged in
this category.
The five categories and their relation to the questions about density are summar-

ized in Table 3.
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5. Discussion

The results of the present study confirmed our hypothesis that the students

would find the questions about the algebraic properties of real numbers easy to

answer. Despite our efforts to make things difficult for them, our participants did

not hesitate to say that the opposite and inverse number of the given numbers did

exist, regardless the possibility of finding them. A probable explanation for this

certainty is that it derives from their knowledge about natural numbers: knowing

that natural numbers do have an inverse and an opposite number, a fact that was

also reminded to them through the preliminary questions P3, P4, students were

ready to accept that these properties can be assigned to rational and irrational

numbers, as well.
The results also confirmed our prediction that deciding about the number of

numbers between two given rational numbers would be a rather demanding task.

As expected, the development of the concept of density was found to be a gradual

process. Five categories of responses were identified, corresponding to different

levels of understanding of the structure of rational numbers, varying from the most

naive to what we defined as sophisticated. The presupposition of discreteness

clearly shapes students’ responses in the first two categories. Students in these cate-

gories generate responses which are limited to subsets of rational numbers that pre-

serve the property of discreteness (for example, 0.001, 0.002, 0.003. . ., or 3=8, 4=8,
5=8,. . .or 3:1=8, 3:2=8, 3:3=8. . . or 0.0051, 0.0052,. . .etc.). By adding a decimal digit
to the given numbers, students in the second category have actually made the first

step towards conceiving the infinite number of numbers in the interval. Yet, the

next step of adding another decimal digit should not be taken for granted. Stu-

dents in the discreteness–density category give seemingly inconsistent answers, in

the sense that they do not answer in the same way questions concerning decimals

with the same number of decimal digits, decimals with different number of decimal
Table 3

Categories of students’ responses to all questions about density
Categories of

responses

D
a3
 Da2
 Da1 D
b1
 Db2
Naive discrete-

ness (9=16)

N
o other
 Only one
 Finite number

of numbers 	0
–
 –
Advanced dis-

creteness (2=16)

F

o

inite number

f numbers >0
Finite number

of numbers >1
Finite number

of numbers 	0
–
 –
Discreteness–

density (4/16)

T
he ‘‘infinitely many’’ answer appears in some, but not in all cases
Naive density

(1=16)

I
nfinitely many
 Infinitely many
 Infinitely many N
eed to turn the

one into the

other’s form
Need to make

them similar
Sophisticated

density (0=16)

I
nfinitely many
 Infinitely many
 Infinitely many N
o need to turn

the one into the

other’s form
No need to

make them

similar
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digits and fractions. Still, students in this category explicitly described how they
made sense of this inconsistency, referring to different groups of numbers.
Although further investigation is needed, we believe that these students have
developed some knowledge as far as particular aspects of rational numbers are
concerned. Yet, this knowledge is not necessarily transferred to all rational num-
bers. For instance, the student mentioned in example 1, a very competent student
in mathematics, insisted that there are infinitely many numbers between two frac-
tions, even in the case of dissimilar fractions. And, although he was clearly able to
turn a decimal into a fraction, he insisted that between two decimals there is a
finite number of numbers. Only after the interview, when he was explicitly
informed about this inconsistency, did he realize that he had used different ways to
think about fractions and decimal numbers. The presupposition of discreteness is
still reflected in some aspects of the discreteness–density students’ responses. The
student who was placed in the naive density category was no longer constrained by
the presupposition of discreteness. Yet, he was able to talk about density only by
referring to sets of numbers of the same representation (either decimals, or frac-
tions).
The results support our hypothesis that the understanding of density is a slow,

gradual process which is constrained by the presupposition of discreteness. As stu-
dents enrich their knowledge and acquire expertise in handling rational numbers,
they generate gradually more sophisticated accounts of the structure of the set of
rational numbers. Students of the second and third category have misconceptions
that can be explained as synthetic models (Vosniadou, 1994b) reflecting the assimi-
lation of new information into prior knowledge structures. For example, student
S2, who consistently answered that there are infinitely many numbers between deci-
mals, gave a completely different response in the case of fractions, referring to the
infinite representation of one single fraction. The results suggest that the under-
standing of density requires reorganization of prior knowledge about natural num-
bers. So, it is a case of conceptual change in mathematics learning.
In this article, we argued that cases where understanding requires conceptual

change can and, in fact, do occur in mathematics learning. This may suggest that
mathematics education can profit from the educational guidelines provided by the
conceptual change approach literature (Vosniadou, 2002). Increasing mathematics
educators’ sensitivity about conceptual change problems is a first step and may
help them to explain why students keep ‘‘forgetting’’ some things, as in the case of
our participants’ mathematics teacher. It may also answer some of the questions
about communicational problems in the classrooms (Sfard, 1994): what seems to
be ‘‘inconsistent’’ to the one who thinks in terms of rational numbers, might not
strike as odd to the one who thinks in terms of fractions and decimals. One has to
bear in mind that presuppositions which constrain learning are not under the con-
scious control of the learner (Vosniadou, 2002). It is important to create learning
environments that allow students to express and elaborate their opinions, so that
they become aware of their beliefs. Finally, when learning requires reorganization
of prior knowledge structures, immediate results should not be expected, even after
carefully designed instruction. Conceptual change may prove to be a slow, time
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consuming process. However, the results in terms of understanding make the effort
worthwhile.
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